You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/mindspore/ccsrc/minddata/dataset/include/tensor.h

768 lines
28 KiB

/**
* Copyright 2019-2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_MINDDATA_DATASET_CORE_TENSOR_H_
#define MINDSPORE_CCSRC_MINDDATA_DATASET_CORE_TENSOR_H_
#include <deque>
#include <memory>
#include <string>
#include <vector>
#include "./securec.h"
#ifndef ENABLE_ANDROID
#include "utils/log_adapter.h"
#else
#include "mindspore/lite/src/common/log_adapter.h"
#endif
#if defined(_WIN32) || defined(_WIN64)
#undef HAVE_STDDEF_H
#undef HAVE_STDLIB_H
#endif
#ifdef ENABLE_PYTHON
#include "pybind11/numpy.h"
#include "pybind11/pybind11.h"
#include "pybind11/stl.h"
#endif
#include "utils/ms_utils.h"
#include "include/api/status.h"
#include "minddata/dataset/core/constants.h"
#include "minddata/dataset/core/data_type.h"
#include "minddata/dataset/core/tensor_shape.h"
#include "minddata/dataset/core/de_tensor.h"
#ifndef ENABLE_ANDROID
#include "proto/example.pb.h"
#endif
#ifdef ENABLE_PYTHON
namespace py = pybind11;
#endif
namespace mindspore {
namespace dataset {
class Tensor;
template <typename T>
class Allocator;
using CharAllocPtr = std::unique_ptr<Allocator<unsigned char>>;
using TensorAllocPtr = std::shared_ptr<Allocator<Tensor>>; // An allocator shared_ptr for Tensors
using offset_t = uint32_t; // type of offset values to store strings locations
using TensorPtr = std::shared_ptr<Tensor>;
class Tensor {
public:
Tensor() = delete;
Tensor(const Tensor &other) = delete;
Tensor &operator=(const Tensor &other) = delete;
/// Create a tensor using shape and type. This constructor should not be used directly, use CreateFromTensor instead
/// \note The shape and type information should be known and valid
/// \note The constructor does not allocate data
/// \param shape TensorShape
/// \param type DataType
Tensor(const TensorShape &shape, const DataType &type);
/// Move constructor
/// \param other Tensor to be moved
Tensor(Tensor &&other) noexcept;
/// Move assignment operator
/// \param other Tensor to be moved
Tensor &operator=(Tensor &&other) noexcept;
/// Create a numeric tensor with type and shape. Items of the tensor would be uninitialized.
/// \param[in] shape shape of the output tensor
/// \param[in] type type of the output tensor
/// \param[out] out Generated tensor
/// \return Status code
static Status CreateEmpty(const TensorShape &shape, const DataType &type, TensorPtr *out);
/// Create a numeric tensor from a pointer in memory. Length of the source data is determined from the shape and type.
/// Data will be copied into the new created tensor.
/// \param[in] shape shape of the output tensor
/// \param[in] type type of the output tensor
/// \param[in] src pointer to the source data
/// \param[out] out Generated tensor
/// \return Status code
static Status CreateFromMemory(const TensorShape &shape, const DataType &type, const uchar *src, TensorPtr *out);
/// Create a tensor from a pointer in memory and length. Data will be copied into the new created tensor.
/// \param[in] shape shape of the output tensor
/// \param[in] type type of the output tensor
/// \param[in] src pointer to the source data
/// \param[in] length length of the src data
/// \param[out] out Generated tensor
/// \return Status code
static Status CreateFromMemory(const TensorShape &shape, const DataType &type, const uchar *src,
const dsize_t &length, TensorPtr *out);
/// Create a copy of the input tensor
/// \param[in] in original tensor to be copied
/// \param[out] out output tensor to be generated
/// \return Status
static Status CreateFromTensor(const TensorPtr &in, TensorPtr *out) {
return CreateFromMemory(in->shape(), in->type(), in->GetBuffer(), in->SizeInBytes(), out);
}
#ifdef ENABLE_PYTHON
/// Create a Tensor from a given py::array
/// \param[in] arr py::array
/// \param[out] out Created tensor
/// \return Status Code
static Status CreateFromNpArray(const py::array &arr, TensorPtr *out);
#endif
#ifndef ENABLE_ANDROID
/// Create a tensor of type DE_STRING from a BytesList.
/// \param[in] bytes_list protobuf's Bytelist
/// \param[in] shape shape of the output tensor
/// \param[out] out created Tensor
/// \return Status Code
static Status CreateFromByteList(const dataengine::BytesList &bytes_list, const TensorShape &shape, TensorPtr *out);
/// Create a tensor of type UINT8 or INT8 from a BytesList.
/// The tensor will be padded with ' ' to reach the required pad_size.
/// \param[in] bytes_list protobuf's Bytelist
/// \param[in] shape shape of the output tensor
/// \param[in] type type of created tensor. Should be DE_UINT8 or INT8
/// \param[in] pad_size The size of the tensor after padding
/// \param[out] out created Tensor
/// \return Status Code
static Status CreateFromByteList(const dataengine::BytesList &bytes_list, const TensorShape &shape,
const DataType &type, dsize_t pad_size, TensorPtr *out);
#endif
/// Create a Tensor from a given list of values.
/// \tparam type of the values to be inserted.
/// \param[in] items elements of the tensor
/// \param[in] shape shape of the output tensor
/// \param[out] out output argument to hold the created Tensor
/// \return Status Code
template <typename T>
static Status CreateFromVector(const std::vector<T> &items, const TensorShape &shape, TensorPtr *out) {
CHECK_FAIL_RETURN_UNEXPECTED(
items.size() == shape.NumOfElements(),
"Number of elements in the vector does not match the number of elements of the shape required");
DataType type = DataType::FromCType<T>();
// if items is empty, items_ptr would be nullptr. CreateFromMemory will handle this case.
auto items_ptr = reinterpret_cast<const uchar *>(&items[0]);
return CreateFromMemory(shape, type, items_ptr, out);
}
/// Create a 1D Tensor from a given list of values.
/// \tparam type of the values to be inserted.
/// \param[in] items elements of the tensor
/// \param[out] out output argument to hold the created Tensor
/// \return Status Code
template <typename T>
static Status CreateFromVector(const std::vector<T> &items, TensorPtr *out) {
return CreateFromVector(items, TensorShape({static_cast<dsize_t>(items.size())}), out);
}
/// Create a numeric scalar Tensor from the given value.
/// \tparam T type of value
/// \param[in] item value
/// \param[out] out Created tensor
/// \return Status code
template <typename T>
static Status CreateScalar(const T &item, TensorPtr *out) {
DataType type = DataType::FromCType<T>();
auto item_ptr = reinterpret_cast<const uchar *>(&item);
return CreateFromMemory(TensorShape::CreateScalar(), type, item_ptr, out);
}
/// Create a tensor from a binary file on disk.
/// \param[in] path file to be read
/// \param[out] out Created Tensor
/// \return Status code
static Status CreateFromFile(const std::string &path, TensorPtr *out);
/// Destruct the tensor and release the memory using the allocator
virtual ~Tensor();
/// Equality operator. compares tensor shape, type and data
/// \param[in] rhs Tensor to be compared with
/// \return bool
bool operator==(const Tensor &rhs) const;
bool operator!=(const Tensor &rhs) const { return !((*this) == rhs); }
/// Get item located at `index`, caller needs to provide the type.
/// \tparam T
/// \param[in] index vector<dsize_t>
/// \return return the item specified at index
template <typename T>
Status GetItemAt(T *o, const std::vector<dsize_t> &index) const;
/// Get string located at `index`.
/// \param[in] index vector<dsize_t>
/// \return return std::string_view specified at index
Status GetItemAt(std::string_view *o, const std::vector<dsize_t> &index) const;
template <typename T>
Status GetUnsignedIntAt(T *o, const std::vector<dsize_t> &index) const;
template <typename T>
Status GetSignedIntAt(T *o, const std::vector<dsize_t> &index) const;
template <typename T>
Status GetFloatAt(T *o, const std::vector<dsize_t> &index) const;
/// set item at location specified by index
/// \tparam `T`
/// \param[in] index
/// \param[in] value of type `T`
template <typename T>
Status SetItemAt(const std::vector<dsize_t> &index, const T &value) {
T *ptr = nullptr;
RETURN_IF_NOT_OK(GetItemPtr<T>(&ptr, index));
*ptr = value;
return Status::OK();
}
/// set string item at location specified by index
/// \param[in] index
/// \param[in] value of type std::string
Status SetItemAt(const std::vector<dsize_t> &index, const std::string &value) {
RETURN_UNEXPECTED_IF_NULL(data_);
uchar *ptr = nullptr;
offset_t length = 0;
RETURN_IF_NOT_OK(GetItemPtr(&ptr, index, &length));
if (value.length() != length) {
RETURN_STATUS_UNEXPECTED("Length of the new string does not match the item.");
}
memcpy_s(reinterpret_cast<char *>(ptr), length, value.c_str(), length);
return Status::OK();
}
/// fill tensor with Zeros. Does not support strings.
Status Zero() {
CHECK_FAIL_RETURN_UNEXPECTED(type_ != DataType::DE_STRING, "Cannot use Zero on tensor of strings..");
dsize_t size = SizeInBytes();
CHECK_FAIL_RETURN_UNEXPECTED(memset_sp(GetMutableBuffer(), size, 0, size) == 0,
"Failed to fill tensor with zeroes.");
return Status::OK();
}
/// Fill all elements in the Tensor with the given value of type `T`. Does not support strings.
/// \tparam T
/// \param value[in]
template <typename T>
Status Fill(const T &value) {
CHECK_FAIL_RETURN_UNEXPECTED(type_ != DataType::DE_STRING, "Cannot use fill on tensor of strings.");
int64_t cellSize = type_.SizeInBytes();
if ((data_ != nullptr) && type_.IsCompatible<T>()) {
for (dsize_t i = 0; i < Size(); i++) {
CHECK_FAIL_RETURN_UNEXPECTED(memcpy_s((data_ + i * cellSize), cellSize, &value, cellSize) == 0, "memcpy err");
}
return Status::OK();
} else {
std::string err;
err += (data_ == nullptr) ? "data_ is nullptr \t" : "";
err += type_.IsCompatible<T>() ? "data type not compatible\t" : "";
return Status(StatusCode::kMDUnexpectedError, err);
}
}
/// Getter function for shape
/// \return
const TensorShape &shape() const { return shape_; }
/// Check if tensor has data
/// \return bool - true if tensor is empty
bool HasData() const { return data_ != nullptr; }
/// Reshape the tensor. The given shape should have the same number of elements in the Tensor
/// \param shape
virtual Status Reshape(const TensorShape &shape);
/// \return number of elements in this tensor
dsize_t Size() const { return shape().NumOfElements(); }
/// \return the number of bytes this tensor is needs
dsize_t SizeInBytes() const {
if (data_end_ == nullptr) return type_.SizeInBytes() * shape_.NumOfElements();
return data_end_ - data_;
}
/// \return the rank of the tensor
dsize_t Rank() const { return shape().Rank(); }
/// Get the starting memory address as a constant for the data of the tensor. This potentially
/// drives an allocation if the data area.
/// \return const unsigned char*
const unsigned char *GetBuffer() const { return data_; }
/// Getter of the type
/// \return
DataType type() const { return type_; }
/// Provide stream operator for displaying it
/// \param output stream
/// \param so the Tensor object to be printed
/// \return output stream
friend std::ostream &operator<<(std::ostream &out, const Tensor &so) {
so.Print(out);
return out;
}
/// Invalidate this Tensor by setting the type and shape to unknown and MData to null.
/// Calling this method will make the Tensor and its data inaccessible, use it with caution.
void Invalidate();
/// Copy input tensor into self at the location index.
/// Index is a vector of axes which can be incomplete:
/// Ex: shape <2,3>, inserting into index {0} will replace the first row. index {1,2} will replace the last cell.
/// \param index
/// \param input
/// \param partial_insert: boolean to determine if insertion along the full axis is enforced
/// \return Status code
Status InsertTensor(const std::vector<dsize_t> &index, const std::shared_ptr<Tensor> &input,
const bool partial_insert = false);
/// Find the address of the given index. Used in InsertTensor.
/// Example:
/// Tensor t= [[1,2],[3,4]] , StartAddrOfIndex({0}) -> &1
/// \param index incomplete index
/// \param output: startAddrofIndex
/// \param output: remaining
/// \return Status code
Status StartAddrOfIndex(std::vector<dsize_t> ind, uchar **start_addr_of_index, TensorShape *remaining);
/// Expand the shape of the Tensor with one extra dimension.
/// For example, if the shape is <512,512,3>:
/// *- ExpandDim(0) gives: <1,512,512,3>
/// *- ExpandDim(1) gives: <512,1,512,3>
/// *- ExpandDim(3) gives: <512,512,3,1>
/// \param axis location of the dim
virtual Status ExpandDim(const dsize_t &axis);
virtual void Squeeze();
/// Calculates the strides of the Tensor
/// Ex: Tensor of shape <4,2,2> and type DE_UINT8 (1 byte)
/// The strides will be {6,2,1}.
/// Ex: Tensor of shape <4,2,2> and type DE_UINT32 (4 byte)
/// The strides will be {24,8,4}.
/// \return vector of integers
std::vector<dsize_t> Strides() const;
std::string ToString() {
std::stringstream ss;
this->Print(ss);
return ss.str();
}
/// Handle negative indices.
static inline dsize_t HandleNeg(dsize_t index, dsize_t length) { return (index < 0) ? (index + length) : index; }
/// Slice tensor bases on the given indices. Copy the sliced data into out tensor. Only rank1 tensors are supported.
/// Based on the type of tensor, SliceNumeric or SliceString will be called
/// \param[out] out Tensor
/// \param[in] indices vector of indices
/// \return Status error code
Status Slice(TensorPtr *out, const std::vector<dsize_t> &indices);
/// Slice numeric tensors.
Status SliceNumeric(TensorPtr *out, const std::vector<dsize_t> &indices);
/// Slice string tensors
Status SliceString(TensorPtr *out, const std::vector<dsize_t> &indices);
#ifdef ENABLE_PYTHON
/// Constructs numpy array from input tensor
/// \param[in] data this data is the location of python data
/// \return Status code
Status GetDataAsNumpy(py::array *data);
Status GetDataAsNumpyStrings(py::array *data);
static Status GetBufferInfo(Tensor *t, py::buffer_info *out);
#endif
/// TensorIterator is a linear iterator that can be used to iterate over the elements of the Tensor
/// The order elements is as the memory layout (i.e., row-major) [[1,2,3],[4,5,6] --> 1,2,3,4,5,6
/// \tparam T type of values in the Tensor Iterator
template <typename T, bool = true>
class TensorIterator {
public:
using iterator_category = std::random_access_iterator_tag;
using value_type = T;
using difference_type = ptrdiff_t;
using pointer = T *;
using reference = T &;
explicit TensorIterator(uchar *ptr = nullptr) { ptr_ = reinterpret_cast<T *>(ptr); }
TensorIterator(const TensorIterator<T> &raw_iterator) { ptr_ = raw_iterator.ptr_; }
~TensorIterator() = default;
TensorIterator<T> &operator=(const TensorIterator<T> &rhs) {
ptr_ = rhs.ptr_;
return *this;
}
TensorIterator<T> &operator=(T *rhs) {
ptr_ = rhs;
return *this;
}
bool operator==(const TensorIterator<T> &rhs) { return ptr_ == rhs.ptr_; }
bool operator!=(const TensorIterator<T> &rhs) { return !(*this == rhs); }
operator bool() const { return ptr_ != nullptr; }
T &operator*() { return *ptr_; }
const T &operator*() const { return *ptr_; }
T *operator->() { return ptr_; }
TensorIterator<T> &operator+=(const ptrdiff_t &inc) {
ptr_ += inc;
return *this;
}
TensorIterator<T> &operator-=(const ptrdiff_t &inc) {
ptr_ -= inc;
return *this;
}
TensorIterator<T> &operator++() {
++ptr_;
return *this;
}
TensorIterator<T> &operator--() {
--ptr_;
return *this;
}
TensorIterator<T> operator++(int) {
auto temp(*this);
++ptr_;
return temp;
}
TensorIterator<T> operator--(int) {
auto temp(*this);
--ptr_;
return temp;
}
TensorIterator<T> operator+(const ptrdiff_t &inc) {
auto oldPtr = ptr_;
ptr_ += inc;
auto temp(*this);
ptr_ = oldPtr;
return temp;
}
TensorIterator<T> operator-(const ptrdiff_t &inc) {
auto oldPtr = ptr_;
ptr_ -= inc;
auto temp(*this);
ptr_ = oldPtr;
return temp;
}
protected:
T *ptr_;
};
// Specialization of TensorIterator for strings. It returns std::string_view for every item.
// \tparam DUMMY, used to mbe able to specialize the inner class
template <bool DUMMY>
class TensorIterator<std::string_view, DUMMY> {
public:
using iterator_category = std::random_access_iterator_tag;
using value_type = std::string_view;
using difference_type = ptrdiff_t;
using pointer = std::string_view *;
using reference = std::string_view &;
explicit TensorIterator(uchar *data = nullptr, dsize_t index = 0) {
data_ = reinterpret_cast<const char *>(data);
index_ = index;
}
TensorIterator(const TensorIterator<std::string_view, DUMMY> &raw_iterator) {
data_ = raw_iterator.data_;
index_ = raw_iterator.index_;
}
~TensorIterator() = default;
bool operator==(const TensorIterator<std::string_view> &rhs) { return data_ == rhs.data_ && index_ == rhs.index_; }
bool operator!=(const TensorIterator<std::string_view> &rhs) { return !(*this == rhs); }
operator bool() const { return data_ != nullptr; }
std::string_view operator*() const {
auto offset_ = reinterpret_cast<const offset_t *>(data_);
offset_t start = offset_[index_];
return std::string_view{data_ + start};
}
TensorIterator<std::string_view> &operator+=(const dsize_t &inc) {
index_ += inc;
return *this;
}
TensorIterator<std::string_view> &operator-=(const dsize_t &inc) {
index_ -= inc;
return *this;
}
TensorIterator<std::string_view> &operator++() {
++index_;
return *this;
}
TensorIterator<std::string_view> &operator--() {
--index_;
return *this;
}
TensorIterator<std::string_view> operator++(int) {
auto temp(*this);
++index_;
return temp;
}
TensorIterator<std::string_view> operator--(int) {
auto temp(*this);
--index_;
return temp;
}
TensorIterator<std::string_view> operator+(const dsize_t &inc) {
auto oldPtr = index_;
index_ += inc;
auto temp(*this);
index_ = oldPtr;
return temp;
}
TensorIterator<std::string_view> operator-(const dsize_t &inc) {
auto oldPtr = index_;
index_ -= inc;
auto temp(*this);
index_ = oldPtr;
return temp;
}
protected:
dsize_t index_;
const char *data_;
};
/// Return a TensorIterator that points to the start of the Tensor.
/// It's the user responsibility to use the correct type that matches the Tensor type
/// \tparam T The type of values in the Tensor
/// \return TensorIterator
template <typename T>
TensorIterator<T> begin() {
return TensorIterator<T>(data_);
}
/// Return a linear iterator that points to the place after the last element of the Tensor.
/// \tparam T The type of values in the Tensor
/// \return TensorIterator
template <typename T>
TensorIterator<T> end() {
return TensorIterator<T>(data_end_);
}
/// Copies the last dimension at `index` from Tensor `src` to this Tensor.
/// \param[in] src Tensor
/// \param[in] index vector to the start of the dimension. The last dim should be 0
/// \return Status
Status CopyLastDimAt(const std::shared_ptr<Tensor> &src, const std::vector<dsize_t> &index);
protected:
/// Allocate memory for the tensor using the data_allocator
/// \param[in] length number of bytes to be allocated
/// \return Error Status
Status AllocateBuffer(const dsize_t &length);
/// Get the starting memory address for the data of the tensor. This potentially
/// drives an allocation if the data is null.
/// \return unsigned char*
unsigned char *GetMutableBuffer() { return data_; }
/// A function that prints Tensor recursively, first called by print
/// \param[in] out
/// \param[in] cur_dim
/// \param[in] cur_index
void PrintRecursive(std::ostream &out, int32_t cur_dim, const std::vector<dsize_t> &cur_index) const;
/// A function that prints info about the tensor
/// \param[out] out output stream
void Print(std::ostream &out) const;
/// A function that print the value as specified by its index
/// \param[in] index vector representing the index
/// \param[out] out
void PrintItemAt(const std::vector<dsize_t> &index, std::ostream &out) const;
/// Get pointer to item located at `index`, caller needs to provide the type.
/// \tparam T
/// \param[in] index vector<dsize_t>
/// \return return a pointer to the item specified at index of type `T`
template <typename T>
Status GetItemPtr(T **, const std::vector<dsize_t> &index) const;
/// Get pointer to string located at `index` and the length of string
/// \param[in] index vector<dsize_t>
/// \return return a pointer to the string specified at index and the length of the string
Status GetItemPtr(uchar **, const std::vector<dsize_t> &index, offset_t *length = nullptr) const;
/// Given a flat index of an item string, return the start and length of the item
/// \param[in] index flat index of the item
/// \param[out] start address of the ths string
/// \param[out] length of the string
Status GetStringAt(dsize_t index, uchar **string_start, offset_t *length) const;
/// Skip the offsets and returns the start of the buffer where the real strings is stored. Caller needs to check if
/// the tensor's type is a string, otherwise undefined address would be returned. \return address of the first string
/// of the tensor.
uchar *GetStringsBuffer() const { return data_ + kOffsetSize * shape_.NumOfElements() + kOffsetSize; }
/// all access to shape_ should be via shape
TensorShape shape_;
/// data type of tensor
DataType type_;
/// pointer to the start of the physical data
unsigned char *data_;
/// An allocator for data_
CharAllocPtr data_allocator_;
/// pointer to the end of the physical data
unsigned char *data_end_ = nullptr;
private:
friend class DETensor;
/// Copy raw data of a array based on shape and strides to the destination pointer
/// \param dst [out] Pointer to the destination array where the content is to be copied
/// \param[in] src Pointer to the source of strided array to be copied
/// \param[in] shape shape of the source array
/// \param[in] strides strides of the source array
/// \param[in] type_size number of bytes needed to store one array element's type
/// \return Status Code
static Status CopyStridedArray(unsigned char *dst, unsigned char *src, std::vector<dsize_t> shape,
std::vector<dsize_t> strides, uint8_t type_size);
/// const of the size of the offset variable
static constexpr uint8_t kOffsetSize = sizeof(offset_t);
#ifdef ENABLE_PYTHON
/// Helper function to create a tensor from Numpy array of strings
/// \param[in] arr Numpy array
/// \param[out] out Created Tensor
/// \return Status
static Status CreateFromNpString(py::array arr, TensorPtr *out);
#endif
};
template <>
inline Tensor::TensorIterator<std::string_view> Tensor::end<std::string_view>() {
return TensorIterator<std::string_view>(data_, shape_.NumOfElements());
}
/// Create a Tensor from a given list of strings.
/// @note: The memory layout of a Tensor of strings consists of the Offset_array followed by the strings.
/// The offset array will store one extra value to find the length of the last string.
/// OFFSET_1, OFFSET_2, ..., OFFSET_n+1, STRING_1, STRING_2, ..., STRING_n
/// The value of each offset is the start index of the corresponding string
/// Offsets is of type offset_t
/// strings will ne null-terminated
/// example: Tensor(['abc', 'de'], shape={2}, type=DE_STRING)
/// |----------------------------------------------------------------|
/// | OFFSET ARRAY | STRINGS |
/// | bytes 0-3 | bytes 3-6 | bytes 7-10 | bytes 11-14 | bytes 15-17 |
/// | 11 | 15 | 18 | abc\0 | de\0 |
/// |----------------------------------------------------------------|
/// \param[in] items elements of the tensor
/// \param[in] shape shape of the output tensor
/// \param[out] out output argument to hold the created Tensor
/// \return Status Code
template <>
inline Status Tensor::CreateFromVector<std::string>(const std::vector<std::string> &items, const TensorShape &shape,
TensorPtr *out) {
CHECK_FAIL_RETURN_UNEXPECTED(
items.size() == shape.NumOfElements(),
"Number of elements in the vector does not match the number of elements of the shape required");
const TensorAlloc *alloc = GlobalContext::Instance()->tensor_allocator();
*out = std::allocate_shared<Tensor>(*alloc, TensorShape({static_cast<dsize_t>(items.size())}),
DataType(DataType::DE_STRING));
if (items.size() == 0) {
if (shape.known()) {
return (*out)->Reshape(shape);
}
}
auto length_sum = [](dsize_t sum, const std::string &s) { return s.length() + sum; };
dsize_t total_length = std::accumulate(items.begin(), items.end(), 0, length_sum);
// total bytes needed = offset array + strings
// offset array needs to store one offset var per element + 1 extra to get the length of the last string.
// strings will be null-terminated --> need 1 extra byte per element
dsize_t num_bytes = (kOffsetSize + 1) * (*out)->shape_.NumOfElements() + kOffsetSize + total_length;
(*out)->AllocateBuffer(num_bytes);
auto offset_arr = reinterpret_cast<offset_t *>((*out)->data_);
uchar *buf = (*out)->GetStringsBuffer();
offset_t offset = buf - (*out)->data_; // the first string will start here
uint32_t i = 0;
for (const auto &str : items) {
// insert the start index of the string.
offset_arr[i++] = offset;
// total bytes are reduced by kOffsetSize
num_bytes -= kOffsetSize;
// insert actual string
int ret_code = memcpy_s((*out)->data_ + offset, num_bytes, common::SafeCStr(str), str.length() + 1);
if (ret_code != 0) MS_LOG(ERROR) << "Cannot copy string into Tensor";
// next string will be stored right after the current one.
offset = offset + str.length() + 1;
// total bytes are reduced by the length of the string
num_bytes -= str.length() + 1;
}
// store one more offset value so we can get the length of the last string
offset_arr[i] = offset;
(*out)->data_end_ = (*out)->data_ + offset_arr[i];
MS_ASSERT(num_bytes == 0);
if (shape.known()) {
RETURN_IF_NOT_OK((*out)->Reshape(shape));
}
return Status::OK();
}
/// Create a string scalar Tensor from the given value.
/// \param[in] item value
/// \param[out] out Created tensor
/// \return Status code
template <>
inline Status Tensor::CreateScalar<std::string>(const std::string &item, TensorPtr *out) {
return CreateFromVector<std::string>({item}, TensorShape::CreateScalar(), out);
}
} // namespace dataset
} // namespace mindspore
#endif // MINDSPORE_CCSRC_MINDDATA_DATASET_CORE_TENSOR_H_