You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

158 lines
5.4 KiB

# 在视频/网络摄像头上运行检测器
# 不在batch上迭代而是在视频的帧上迭代
from __future__ import division
import time
import torch
import torch.nn as nn
from torch.autograd import Variable
import numpy as np
import cv2
from util import *
import argparse
import os
import os.path as osp
from darknet import Darknet
import pickle as pkl
import pandas as pd
import random
# 命令行参数
def arg_parse():
parser = argparse.ArgumentParser(description='YOLO v3 Detection Module')
# images用于指定输入图像或图像目录
parser.add_argument("--images", dest = 'images', help =
"Image / Directory containing images to perform detection upon",
default = "imgs", type = str)
# det保存检测结果的目录
parser.add_argument("--det", dest = 'det', help =
"Image / Directory to store detections to",
default = "det", type = str)
# batch大小
parser.add_argument("--bs", dest = "bs", help = "Batch size", default = 1)
# objectness置信度
parser.add_argument("--confidence", dest = "confidence", help = "Object Confidence to filter predictions", default = 0.5)
# NMS阈值
parser.add_argument("--nms_thresh", dest = "nms_thresh", help = "NMS Threshhold", default = 0.4)
# cfg替代配置文件
parser.add_argument("--cfg", dest = 'cfgfile', help =
"Config file",
default = "cfg/yolov3.cfg", type = str)
parser.add_argument("--weights", dest = 'weightsfile', help =
"weightsfile",
default = "yolov3.weights", type = str)
# reso输入图像的分辨率可用于在速度与准确度之间的权衡
parser.add_argument("--reso", dest = 'reso', help =
"Input resolution of the network. Increase to increase accuracy. Decrease to increase speed",
default = "416", type = str)
return parser.parse_args()
if __name__ == '__main__':
args = arg_parse()
images = args.images
batch_size = int(args.bs)
confidence = float(args.confidence)
nms_thesh = float(args.nms_thresh)
start = 0
CUDA = torch.cuda.is_available()
num_classes = 80 # COCO数据集中目标的名称
classes = load_classes("data/coco.names")
# 初始化网络,加载权重
print("正在加载网络QAQ")
model = Darknet(args.cfgfile)
model.load_weights(args.weightsfile)
print("网络加载成功QvQ")
model.net_info["height"] = args.reso
inp_dim = int(model.net_info["height"])
assert inp_dim % 32 == 0
assert inp_dim > 32
# GPU加速
if CUDA:
model.cuda()
# 模型评估
model.eval()
# 绘制边界框:从colors中随机选颜色绘制矩形框
# 边界框左上角创建一个填充后的矩形,写入该框位置检测到的目标的类别
def write(x, results):
c1 = tuple(x[1:3].int())
c2 = tuple(x[3:5].int())
img = results # 仅处理一帧
cls = int(x[-1])
color = random.choice(colors)
label = "{0}".format(classes[cls])
cv2.rectangle(img, c1, c2, color, 1)
t_size = cv2.getTextSize(label, cv2.FONT_HERSHEY_PLAIN, 1, 1)[0]
c2 = c1[0] + t_size[0] + 3, c1[1] + t_size[1] + 4
cv2.rectangle(img, c1, c2, color, -1) # -1表示填充的矩形
cv2.putText(img, label, (c1[0], c1[1] + t_size[1] + 4), cv2.FONT_HERSHEY_PLAIN, 1, [225,225,225], 1)
return img
# 检测阶段
videofile = "workingcell.mp4" # 加载视频文件路径
cap = cv2.VideoCapture(videofile) # 用OpenCV打开视频/相机流
#assert cap.isOpened(), '未找到需要检测视频TAT'
frames = 0 # 帧的数量
start = time.time()
# 在帧上迭代,一次处理一帧
while cap.isOpened():
ret, frame = cap.read()
if ret:
img = prep_image(frame, inp_dim)
im_dim = frame.shape[1], frame.shape[0]
im_dim = torch.FloatTensor(im_dim).repeat(1,2)
if CUDA:
im_dim = im_dim.cuda()
img = img.cuda()
output = model(Variable(img, volatile=True), CUDA)
output = write_results(output, confidence, num_classes, nms_conf=nms_thesh)
if type(output) == int:
frames += 1
print("视频的FPS为 {:5.4f}".format(frames / (time.time() - start)))
# 使用cv2.imshow展示画有边界框的帧
cv2.imshow("", frame)
key = cv2.waitKey(1)
# 用户按q就会终止视频(代码中断循环)
if key & 0xFF == ord('q'):
break
continue
output[:,1:5] = torch.clamp(output[:,1:5], 0.0, float(inp_dim))
im_dim = im_dim.repeat(output.size(0), 1)/inp_dim
output[:,1:5] *= im_dim
classes = load_classes('data/coco.names')
colors = pkl.load(open("pallete", "rb"))
list(map(lambda x: write(x, frame), output))
cv2.imshow("", frame)
key = cv2.waitKey(1)
if key & 0xFF == ord('q'):
break
frames += 1
print(time.time() - start)
print("视频的FPS为 {:5.4f}".format(frames / (time.time() - start)))
else:
break