You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/operators/sample_logits_op.cc

246 lines
10 KiB

/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/sample_logits_op.h"
#include <memory>
#include "paddle/fluid/operators/math/sample_prob.h"
namespace paddle {
namespace operators {
class SampleLogitsOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("Logits",
"(Tensor, default: Tensor<float>), The unscaled log probabilities "
"which is a 2-D tensor with shape [N x K]. N is the batch_size, "
"and K is the class number.");
6 years ago
AddInput("Labels",
"(Tensor) The ground truth which is a 2-D tensor. Labels is a "
"Tensor<int64> with shape [N x NT], where NT is the number of"
"true labels for each example.");
6 years ago
AddInput("CustomizedSamples",
"(Tensor, default: Tensor<int64_t>), A 2-D tensor with shape [N, "
"NT + S],"
" where N is the batch size, NT is the number of true labels "
"and S is the number of negtive sample for each example."
"The first NT elements of each row should be the same with true "
"labels, "
"followed by S custom negtive samples. This tensor"
"is only used when use_customized_samples is true.")
.AsDispensable();
AddInput(
6 years ago
"CustomizedProbabilities",
"(Tensor, default: Tensor<float>), A 2-D tensor with shape [N, NT + S]."
"The tensor has the same shape with CustomSamples,"
"and each element represents probability of element in CustomSamples. "
"This "
"tensor is only used when use_customized_samples is true.")
.AsDispensable();
6 years ago
AddOutput("Samples",
"(Tensor, default: Tensor<int64_t>), A 2-D tensor with shape [N, "
"NT + S]."
"The outputs value of sampler, including NT true lables and S "
"negetive samples "
"for each example. This will be used in"
"backward calculation.")
.AsIntermediate();
AddOutput(
"Probabilities",
6 years ago
"(Tensor, default: Tensor<float>), A 2-D tensor with shape [N, NT + S]."
"The probabilites of sampled positive and negtive labels.")
.AsIntermediate();
AddOutput("LogitsDim", "Store dim information of Logits for gradient op")
.AsIntermediate();
AddOutput("LabelsDim", "Store dim information of Logits for gradient op")
.AsIntermediate();
AddOutput("SampledLogits",
"(Tensor, default: Tensor<float>), A 2-D tensor with shape"
6 years ago
"[N, NT + S]. The outputs value of sampled logits, which will be"
"used in backward propagation.")
.AsIntermediate();
AddOutput(
6 years ago
"SampledLabels",
"(Tensor, default: Tensor<int64>), A 2-D tensor. The sampled labels"
"with shape [N, NT]. The tonsor contains hard labels as input to "
" softmax op, that is 0, 1, ..., NT-1 because of the first NT elements"
6 years ago
" of Sampels are positive lables.");
AddAttr<bool>(
6 years ago
"use_customized_samples",
"An indicator whether to use customized samples with probabilities, if "
"True"
"the operator will use customized samples and customized probabilities"
"otherwise, the operator will generate them by itself.")
.SetDefault(false);
AddAttr<bool>(
"uniq",
"An indicator whether to sample non-repetitive negtive labels, if True"
"the operator will sample negtive labels without replacement."
6 years ago
"Otherwise, the operator will sample negtive labels with replacement.")
.SetDefault(true);
AddAttr<bool>(
"remove_accidental_hits",
"An indicator whether to remove accidental hits when samples hits true"
"labels, the removal is implemented by subtracting the corresponding"
"logits by float_max to subpress their softmax to be zero.")
.SetDefault(true);
AddAttr<int>("num_samples", "The number of negative samples.");
AddAttr<int>("seed", "Random seed for generating samples").SetDefault(0);
AddComment(R"DOC(
"""
Computes sampled output training logits and labels suitable for implementing
6 years ago
sampled softmax.
"""
)DOC");
}
};
class SampleLogitsOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("Logits"),
"Input(Logits) should be not null.");
6 years ago
PADDLE_ENFORCE(ctx->HasInput("Labels"),
"Input(Labels) should be not null.");
PADDLE_ENFORCE(ctx->HasOutput("Samples"),
"Output(Samples) should be not null.");
PADDLE_ENFORCE(ctx->HasOutput("Probabilities"),
"Output(Probabilities) should be not null.");
PADDLE_ENFORCE(ctx->HasOutput("SampledLogits"),
"Output(SampledLogits) should be not null.");
6 years ago
PADDLE_ENFORCE(ctx->HasOutput("SampledLabels"),
"Output(SampledLabels) should be not null.");
PADDLE_ENFORCE(ctx->HasOutput("LogitsDim"),
"Output(LogitsDim) should be not null.");
PADDLE_ENFORCE(ctx->HasOutput("LabelsDim"),
"Output(LabelsDim) should be not null.");
auto logits_dims = ctx->GetInputDim("Logits");
6 years ago
auto labels_dims = ctx->GetInputDim("Labels");
PADDLE_ENFORCE_EQ(
logits_dims.size(), 2UL,
"The logits of softmax_with_cross_entropy should be a 2-D tensor.");
PADDLE_ENFORCE_EQ(labels_dims.size(), 2UL,
"The labels should be a 2-D tensor.");
const int num_samples = ctx->Attrs().Get<int>("num_samples");
int num_sampled_classes = labels_dims[1] + num_samples;
if ((!ctx->IsRuntime()) && labels_dims[1] <= 0) {
num_sampled_classes = -1;
}
ctx->SetOutputDim("Samples", {logits_dims[0], num_sampled_classes});
ctx->SetOutputDim("Probabilities", {logits_dims[0], num_sampled_classes});
ctx->SetOutputDim("SampledLogits", {logits_dims[0], num_sampled_classes});
6 years ago
ctx->SetOutputDim("SampledLabels", {logits_dims[0], labels_dims[1]});
// append 0 to shape variable to avoid optimized by memory optimize pass
auto logits_dim_vec = framework::vectorize(logits_dims);
logits_dim_vec.push_back(0);
ctx->SetOutputDim("LogitsDim", framework::make_ddim(logits_dim_vec));
auto labels_dim_vec = framework::vectorize(labels_dims);
labels_dim_vec.push_back(0);
ctx->SetOutputDim("LabelsDim", framework::make_ddim(labels_dim_vec));
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "Logits");
framework::OpKernelType kt =
framework::OpKernelType(data_type, ctx.device_context());
return kt;
}
};
// UNDERSTAND: InferShape for Grad
class SampleLogitsOpGrad : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("LogitsDim"),
"Input(LogitsDim) should not be null.");
PADDLE_ENFORCE(ctx->HasInput("LabelsDim"),
"Input(LabelsDim) should be not null.");
PADDLE_ENFORCE(ctx->HasInput("Samples"),
"Input(Samples) should be not null.");
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("SampledLogits")),
"Input(SampledLogits@Grad) should not be null.");
PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("Logits")),
"Output(Logits@Grad) should be not null.");
auto logits_dims = ctx->GetInputDim("LogitsDim");
logits_dims = framework::DDim(logits_dims.Get(), logits_dims.size() - 1);
auto labels_dims = ctx->GetInputDim("LabelsDim");
labels_dims = framework::DDim(labels_dims.Get(), labels_dims.size() - 1);
PADDLE_ENFORCE_EQ(labels_dims.size(), 2UL,
"The label should be a 2-D tensor.");
PADDLE_ENFORCE_EQ(logits_dims.size(), 2UL,
"The logits should be a 2-D tensor.");
ctx->SetOutputDim(framework::GradVarName("Logits"), logits_dims);
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
auto data_type = OperatorWithKernel::IndicateVarDataType(
ctx, framework::GradVarName("SampledLogits"));
framework::OpKernelType kt =
framework::OpKernelType(data_type, ctx.device_context());
return kt;
}
};
// UNDERSTAND: what's the rule for making a GradMaker TODO
GradMaker for dygraph (#19706) * refactor dygraph,test=develop * fix failed unittest,test=develop * polish code,test=develop * check windows ci error,test=develop try to fix windows ci error by np.allclose,test=develop * polish vlog and profiler, test=develop * try to fix preceding ops order,test=develop * test transformer in windows ci, test=develop * use python c-api to speed up tracer.trace,test=develop * test=develop, fix docker with paddle nccl problem * test=develop, add ut for debug string and gradient_accumulator * test=develop, add tests for layer/gradient_accumulator/prepared_op * test=develop, fix complie error for test_prepared_op * test=develop, add more ut for dygraph * test=develop, create API.spec for dygraph api change * optimize grad maker; test=develop * optimize grad maker * test * grad make optim; test=develop * fix unittest bugs; test=develop * add dygraph grad op maker and split_op * grad op maker refactor; test=develop * add dygraph grad maker; test=develop * fix op deformable_conv_v1_op bug; test=develop * fix deformable_conv prroi pool bugs; * fix new op grad op maker bug; test=develop * fix split by ref bug; test=develop * fix dygraph auto prune bug; test=develop * fix test_trace bug; test=develop * fix fused emb seq pool bug; test=develop * remove useless code in op_desc file; test=develop * remove useless code, StrVarBaseNode; test=develop * fix review issues; test=develop * fix rank_loss grad maker; test=develop * remove flag in VarBase; test=develop * fix distributed_notify_op compile bug ; test=develop * fix reshape op double grad; test=develop * fix expand as op; test=develop * add impertive type_defs.h for demo_train; test=develop * fix inference lib cmake; test=develop * fix inference lib; test=develop * fix infernce_lib; test=develop * fix inference cmake; test=develop * fix inference lib; test=develop * fix inference lib; test=develop * remove condition dygraph grad maker, modify local name; test=develop * fix split grad maker bug; test=develop * fix pyramid_op bug; test=develop * change travis time out limit; test=develop * restore travis; test=develop * change timeout limit; test=develop
5 years ago
template <typename T>
class SampleLogitsGradMaker : public framework::SingleGradOpMaker<T> {
public:
GradMaker for dygraph (#19706) * refactor dygraph,test=develop * fix failed unittest,test=develop * polish code,test=develop * check windows ci error,test=develop try to fix windows ci error by np.allclose,test=develop * polish vlog and profiler, test=develop * try to fix preceding ops order,test=develop * test transformer in windows ci, test=develop * use python c-api to speed up tracer.trace,test=develop * test=develop, fix docker with paddle nccl problem * test=develop, add ut for debug string and gradient_accumulator * test=develop, add tests for layer/gradient_accumulator/prepared_op * test=develop, fix complie error for test_prepared_op * test=develop, add more ut for dygraph * test=develop, create API.spec for dygraph api change * optimize grad maker; test=develop * optimize grad maker * test * grad make optim; test=develop * fix unittest bugs; test=develop * add dygraph grad op maker and split_op * grad op maker refactor; test=develop * add dygraph grad maker; test=develop * fix op deformable_conv_v1_op bug; test=develop * fix deformable_conv prroi pool bugs; * fix new op grad op maker bug; test=develop * fix split by ref bug; test=develop * fix dygraph auto prune bug; test=develop * fix test_trace bug; test=develop * fix fused emb seq pool bug; test=develop * remove useless code in op_desc file; test=develop * remove useless code, StrVarBaseNode; test=develop * fix review issues; test=develop * fix rank_loss grad maker; test=develop * remove flag in VarBase; test=develop * fix distributed_notify_op compile bug ; test=develop * fix reshape op double grad; test=develop * fix expand as op; test=develop * add impertive type_defs.h for demo_train; test=develop * fix inference lib cmake; test=develop * fix inference lib; test=develop * fix infernce_lib; test=develop * fix inference cmake; test=develop * fix inference lib; test=develop * fix inference lib; test=develop * remove condition dygraph grad maker, modify local name; test=develop * fix split grad maker bug; test=develop * fix pyramid_op bug; test=develop * change travis time out limit; test=develop * restore travis; test=develop * change timeout limit; test=develop
5 years ago
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
protected:
void Apply(GradOpPtr<T> grad_op) const override {
grad_op->SetType("sample_logits_grad");
GradMaker for dygraph (#19706) * refactor dygraph,test=develop * fix failed unittest,test=develop * polish code,test=develop * check windows ci error,test=develop try to fix windows ci error by np.allclose,test=develop * polish vlog and profiler, test=develop * try to fix preceding ops order,test=develop * test transformer in windows ci, test=develop * use python c-api to speed up tracer.trace,test=develop * test=develop, fix docker with paddle nccl problem * test=develop, add ut for debug string and gradient_accumulator * test=develop, add tests for layer/gradient_accumulator/prepared_op * test=develop, fix complie error for test_prepared_op * test=develop, add more ut for dygraph * test=develop, create API.spec for dygraph api change * optimize grad maker; test=develop * optimize grad maker * test * grad make optim; test=develop * fix unittest bugs; test=develop * add dygraph grad op maker and split_op * grad op maker refactor; test=develop * add dygraph grad maker; test=develop * fix op deformable_conv_v1_op bug; test=develop * fix deformable_conv prroi pool bugs; * fix new op grad op maker bug; test=develop * fix split by ref bug; test=develop * fix dygraph auto prune bug; test=develop * fix test_trace bug; test=develop * fix fused emb seq pool bug; test=develop * remove useless code in op_desc file; test=develop * remove useless code, StrVarBaseNode; test=develop * fix review issues; test=develop * fix rank_loss grad maker; test=develop * remove flag in VarBase; test=develop * fix distributed_notify_op compile bug ; test=develop * fix reshape op double grad; test=develop * fix expand as op; test=develop * add impertive type_defs.h for demo_train; test=develop * fix inference lib cmake; test=develop * fix inference lib; test=develop * fix infernce_lib; test=develop * fix inference cmake; test=develop * fix inference lib; test=develop * fix inference lib; test=develop * remove condition dygraph grad maker, modify local name; test=develop * fix split grad maker bug; test=develop * fix pyramid_op bug; test=develop * change travis time out limit; test=develop * restore travis; test=develop * change timeout limit; test=develop
5 years ago
grad_op->SetInput("LogitsDim", this->Output("LogitsDim"));
grad_op->SetInput("LabelsDim", this->Output("LabelsDim"));
grad_op->SetInput("Samples", this->Output("Samples"));
grad_op->SetInput(framework::GradVarName("SampledLogits"),
GradMaker for dygraph (#19706) * refactor dygraph,test=develop * fix failed unittest,test=develop * polish code,test=develop * check windows ci error,test=develop try to fix windows ci error by np.allclose,test=develop * polish vlog and profiler, test=develop * try to fix preceding ops order,test=develop * test transformer in windows ci, test=develop * use python c-api to speed up tracer.trace,test=develop * test=develop, fix docker with paddle nccl problem * test=develop, add ut for debug string and gradient_accumulator * test=develop, add tests for layer/gradient_accumulator/prepared_op * test=develop, fix complie error for test_prepared_op * test=develop, add more ut for dygraph * test=develop, create API.spec for dygraph api change * optimize grad maker; test=develop * optimize grad maker * test * grad make optim; test=develop * fix unittest bugs; test=develop * add dygraph grad op maker and split_op * grad op maker refactor; test=develop * add dygraph grad maker; test=develop * fix op deformable_conv_v1_op bug; test=develop * fix deformable_conv prroi pool bugs; * fix new op grad op maker bug; test=develop * fix split by ref bug; test=develop * fix dygraph auto prune bug; test=develop * fix test_trace bug; test=develop * fix fused emb seq pool bug; test=develop * remove useless code in op_desc file; test=develop * remove useless code, StrVarBaseNode; test=develop * fix review issues; test=develop * fix rank_loss grad maker; test=develop * remove flag in VarBase; test=develop * fix distributed_notify_op compile bug ; test=develop * fix reshape op double grad; test=develop * fix expand as op; test=develop * add impertive type_defs.h for demo_train; test=develop * fix inference lib cmake; test=develop * fix inference lib; test=develop * fix infernce_lib; test=develop * fix inference cmake; test=develop * fix inference lib; test=develop * fix inference lib; test=develop * remove condition dygraph grad maker, modify local name; test=develop * fix split grad maker bug; test=develop * fix pyramid_op bug; test=develop * change travis time out limit; test=develop * restore travis; test=develop * change timeout limit; test=develop
5 years ago
this->OutputGrad("SampledLogits"));
grad_op->SetOutput(framework::GradVarName("Logits"),
this->InputGrad("Logits"));
grad_op->SetAttrMap(this->Attrs());
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(sample_logits, ops::SampleLogitsOp, ops::SampleLogitsOpMaker,
GradMaker for dygraph (#19706) * refactor dygraph,test=develop * fix failed unittest,test=develop * polish code,test=develop * check windows ci error,test=develop try to fix windows ci error by np.allclose,test=develop * polish vlog and profiler, test=develop * try to fix preceding ops order,test=develop * test transformer in windows ci, test=develop * use python c-api to speed up tracer.trace,test=develop * test=develop, fix docker with paddle nccl problem * test=develop, add ut for debug string and gradient_accumulator * test=develop, add tests for layer/gradient_accumulator/prepared_op * test=develop, fix complie error for test_prepared_op * test=develop, add more ut for dygraph * test=develop, create API.spec for dygraph api change * optimize grad maker; test=develop * optimize grad maker * test * grad make optim; test=develop * fix unittest bugs; test=develop * add dygraph grad op maker and split_op * grad op maker refactor; test=develop * add dygraph grad maker; test=develop * fix op deformable_conv_v1_op bug; test=develop * fix deformable_conv prroi pool bugs; * fix new op grad op maker bug; test=develop * fix split by ref bug; test=develop * fix dygraph auto prune bug; test=develop * fix test_trace bug; test=develop * fix fused emb seq pool bug; test=develop * remove useless code in op_desc file; test=develop * remove useless code, StrVarBaseNode; test=develop * fix review issues; test=develop * fix rank_loss grad maker; test=develop * remove flag in VarBase; test=develop * fix distributed_notify_op compile bug ; test=develop * fix reshape op double grad; test=develop * fix expand as op; test=develop * add impertive type_defs.h for demo_train; test=develop * fix inference lib cmake; test=develop * fix inference lib; test=develop * fix infernce_lib; test=develop * fix inference cmake; test=develop * fix inference lib; test=develop * fix inference lib; test=develop * remove condition dygraph grad maker, modify local name; test=develop * fix split grad maker bug; test=develop * fix pyramid_op bug; test=develop * change travis time out limit; test=develop * restore travis; test=develop * change timeout limit; test=develop
5 years ago
ops::SampleLogitsGradMaker<paddle::framework::OpDesc>,
ops::SampleLogitsGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(sample_logits_grad, ops::SampleLogitsOpGrad);
REGISTER_OP_CPU_KERNEL(sample_logits, ops::SampleLogitsKernel<float>,
ops::SampleLogitsKernel<double>);
REGISTER_OP_CPU_KERNEL(sample_logits_grad, ops::SampleLogitsGradKernel<float>,
ops::SampleLogitsGradKernel<double>);