You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/operators/gru_unit_op.h

192 lines
8.6 KiB

8 years ago
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/operators/math/math_function.h"
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
template <typename T, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;
template <typename Place, typename T>
class GRUUnitKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* input = context.Input<Tensor>("input");
auto* hidden_prev = context.Input<Tensor>("hidden_prev");
auto* weight = context.Input<Tensor>("weight");
auto* bias = context.Input<Tensor>("bias");
auto* gate = context.Output<Tensor>("gate");
gate->mutable_data<T>(context.GetPlace());
auto* reset_hidden_prev = context.Output<Tensor>("reset_hidden_prev");
reset_hidden_prev->mutable_data<T>(context.GetPlace());
auto* hidden = context.Output<Tensor>("hidden");
hidden->mutable_data<T>(context.GetPlace());
int batch_size = input->dims()[0];
int frame_size = hidden_prev->dims()[1];
auto x = EigenMatrix<T>::From(*input);
auto h_p = EigenMatrix<T>::From(*hidden_prev);
auto b = EigenMatrix<T>::From(*bias);
auto g = EigenMatrix<T>::From(*gate);
auto r_h_p = EigenMatrix<T>::From(*reset_hidden_prev);
auto h = EigenMatrix<T>::From(*hidden);
auto place = context.GetEigenDevice<Place>();
// calculate unactivated gate outputs
g.device(place) = x +
b.reshape(Eigen::array<int, 2>({{1, frame_size * 3}}))
.broadcast(Eigen::array<int, 2>({{batch_size, 1}}));
const T* hidden_prev_data = hidden_prev->data<T>();
const T* weight_data = weight->data<T>();
T* gate_data = gate->data<T>();
T* reset_hidden_prev_data = reset_hidden_prev->data<T>();
math::gemm<Place, T>(context.device_context(), false, false, batch_size,
2 * frame_size, frame_size, 1, hidden_prev_data,
frame_size, weight_data, frame_size * 2, 1, gate_data,
frame_size * 3);
// calculate activited gate
Eigen::array<int, 2> extents({{batch_size, frame_size}});
Eigen::array<int, 2> u_offsets({{0, 0}});
g.slice(u_offsets, extents).device(place) =
g.slice(u_offsets, extents).sigmoid();
auto u = g.slice(u_offsets, extents); // update gate
Eigen::array<int, 2> r_offsets({{0, frame_size}});
g.slice(r_offsets, extents).device(place) =
g.slice(r_offsets, extents).sigmoid();
auto r = g.slice(r_offsets, extents); // reset gate
r_h_p.device(place) = r * h_p; // reset previous hidden state
math::gemm<Place, T>(context.device_context(), false, false, batch_size,
frame_size, frame_size, 1, reset_hidden_prev_data,
frame_size, weight_data + frame_size * frame_size * 2,
frame_size, 1, gate_data + frame_size * 2,
frame_size * 3);
Eigen::array<int, 2> c_offsets({{0, frame_size * 2}});
g.slice(c_offsets, extents).device(place) =
g.slice(c_offsets, extents).tanh();
auto c = g.slice(c_offsets, extents); // output candidate
// calculate final output
h.device(place) = u * (h_p - c) + c;
}
};
template <typename Place, typename T>
class GRUUnitGradKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* input = context.Input<Tensor>("input");
auto* hidden_prev = context.Input<Tensor>("hidden_prev");
auto* weight = context.Input<Tensor>("weight");
auto* gate = context.Input<Tensor>("gate");
auto* reset_hidden_prev = context.Input<Tensor>("reset_hidden_prev");
auto* hidden_grad = context.Input<Tensor>(framework::GradVarName("hidden"));
auto* input_grad = context.Output<Tensor>(framework::GradVarName("input"));
auto* hidden_prev_grad =
context.Output<Tensor>(framework::GradVarName("hidden_prev"));
auto* weight_grad =
context.Output<Tensor>(framework::GradVarName("weight"));
auto* bias_grad = context.Output<Tensor>(framework::GradVarName("bias"));
input_grad->mutable_data<T>(context.GetPlace());
hidden_prev_grad->mutable_data<T>(context.GetPlace());
weight_grad->mutable_data<T>(context.GetPlace());
bias_grad->mutable_data<T>(context.GetPlace());
Tensor gate_grad;
gate_grad.mutable_data<T>(input->dims(), context.GetPlace());
Tensor reset_hidden_prev_grad;
reset_hidden_prev_grad.mutable_data<T>(reset_hidden_prev->dims(),
context.GetPlace());
int batch_size = input->dims()[0];
int frame_size = hidden_prev->dims()[1];
const T* hidden_prev_data = hidden_prev->data<T>();
T* hidden_prev_grad_data = hidden_prev_grad->data<T>();
const T* weight_data = weight->data<T>();
T* weight_grad_data = weight_grad->data<T>();
T* gate_grad_data = gate_grad.data<T>();
const T* reset_hidden_prev_data = reset_hidden_prev->data<T>();
T* reset_hidden_prev_grad_data = reset_hidden_prev_grad.data<T>();
auto h_p = EigenMatrix<T>::From(*hidden_prev);
auto g = EigenMatrix<T>::From(*gate);
auto d_h = EigenMatrix<T>::From(*hidden_grad);
auto d_x = EigenMatrix<T>::From(*input_grad);
auto d_h_p = EigenMatrix<T>::From(*hidden_prev_grad);
auto d_b = EigenMatrix<T>::From(*bias_grad);
auto d_g = EigenMatrix<T>::From(gate_grad);
auto d_r_h_p = EigenMatrix<T>::From(reset_hidden_prev_grad);
auto place = context.GetEigenDevice<Place>();
Eigen::array<int, 2> extents({{batch_size, frame_size}});
Eigen::array<int, 2> u_offsets({{0, 0}});
auto u = g.slice(u_offsets, extents); // update gate
Eigen::array<int, 2> r_offsets({{0, frame_size}});
auto r = g.slice(r_offsets, extents); // reset gate
Eigen::array<int, 2> c_offsets({{0, frame_size * 2}});
auto c = g.slice(c_offsets, extents); // output candidate
// backward for unactivated update gate
d_g.slice(u_offsets, extents).device(place) =
d_h * (h_p - c) * u * (u.constant(T(1)) - u);
// backward for unactivated output candidate
d_g.slice(c_offsets, extents).device(place) =
d_h * (u.constant(T(1)) - u) * (c.constant(T(1)) - c * c);
// backward for reset_hidden_prev
math::gemm<Place, T>(context.device_context(), false, true, batch_size,
frame_size, frame_size, 1,
gate_grad_data + frame_size * 2, frame_size * 3,
weight_data + frame_size * frame_size * 2, frame_size,
0, reset_hidden_prev_grad_data, frame_size);
// backward for state_weight
math::gemm<Place, T>(
context.device_context(), true, false, frame_size, frame_size,
batch_size, 1, reset_hidden_prev_data, frame_size,
gate_grad_data + frame_size * 2, frame_size * 3, 0,
weight_grad_data + frame_size * frame_size * 2, frame_size);
// backward for unactivated reset gate
d_g.slice(r_offsets, extents).device(place) =
d_r_h_p * h_p * r * (r.constant(T(1)) - r);
// backward for update_gate_weight and reset_gate_weight
math::gemm<Place, T>(context.device_context(), true, false, frame_size,
frame_size * 2, batch_size, 1, hidden_prev_data,
frame_size, gate_grad_data, frame_size * 3, 0,
weight_grad_data, frame_size * 2);
// backward for hidden_prev
d_h_p.device(place) = d_r_h_p * r + d_h * u;
math::gemm<Place, T>(context.device_context(), false, true, batch_size,
frame_size, frame_size * 2, 1, gate_grad_data,
frame_size * 3, weight_data, frame_size * 2, 1,
hidden_prev_grad_data, frame_size);
// backward for input
d_x.device(place) = d_g;
// backward for bias
d_b.device(place) = d_g.sum(Eigen::array<int, 1>({{0}}));
}
};
} // namespace operators
} // namespace paddle