You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
148 lines
5.4 KiB
148 lines
5.4 KiB
6 years ago
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
||
|
|
||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
you may not use this file except in compliance with the License.
|
||
|
You may obtain a copy of the License at
|
||
|
|
||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||
|
|
||
|
Unless required by applicable law or agreed to in writing, software
|
||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
See the License for the specific language governing permissions and
|
||
|
limitations under the License. */
|
||
|
|
||
|
#include "paddle/fluid/operators/grid_sampler_op.h"
|
||
|
#include "paddle/fluid/framework/op_registry.h"
|
||
|
#ifdef PADDLE_WITH_CUDA
|
||
|
#include "paddle/fluid/platform/cudnn_helper.h"
|
||
|
#endif
|
||
|
|
||
|
namespace paddle {
|
||
|
namespace operators {
|
||
|
|
||
|
using Tensor = framework::Tensor;
|
||
|
|
||
|
class GridSampleOp : public framework::OperatorWithKernel {
|
||
|
public:
|
||
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
||
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
||
|
PADDLE_ENFORCE(ctx->HasInput("X"),
|
||
|
"Input(X) of GridSampleOp should not be null.");
|
||
|
PADDLE_ENFORCE(ctx->HasInput("Grid"),
|
||
|
"Input(Grid) of GridSampleOp should not be null.");
|
||
|
PADDLE_ENFORCE(ctx->HasOutput("Output"),
|
||
|
"Output(Output) of GridSampleOp should not be null.");
|
||
|
|
||
|
auto x_dims = ctx->GetInputDim("X");
|
||
|
auto grid_dims = ctx->GetInputDim("Grid");
|
||
|
PADDLE_ENFORCE(x_dims.size() == 4, "Input(X) of GridSampleOp should be 4-D Tensor.");
|
||
|
PADDLE_ENFORCE(grid_dims.size() == 4, "Input(Grid) of GridSampleOp should be 4-D Tensor.");
|
||
|
PADDLE_ENFORCE(grid_dims[3] == 2, "Input(Grid) dims[3] should be 2.");
|
||
|
PADDLE_ENFORCE_EQ(grid_dims[0], x_dims[0], "Input(X) and Input(Grid) dims[0] should be equal.");
|
||
|
PADDLE_ENFORCE_EQ(grid_dims[1], x_dims[2], "Input(X) dims[2] and Input(Grid) dims[1] should be equal.");
|
||
|
PADDLE_ENFORCE_EQ(grid_dims[2], x_dims[3], "Input(X) dims[3] and Input(Grid) dims[2] should be equal.");
|
||
|
|
||
|
ctx->SetOutputDim("Output", x_dims);
|
||
|
ctx->ShareLoD("X", "Output");
|
||
|
}
|
||
|
|
||
|
protected:
|
||
|
framework::OpKernelType GetExpectedKernelType(
|
||
|
const framework::ExecutionContext& ctx) const override {
|
||
|
framework::LibraryType library_{framework::LibraryType::kPlain};
|
||
|
#ifdef PADDLE_WITH_CUDA
|
||
|
if (platform::CanCUDNNBeUsed(ctx)) {
|
||
|
library_ = framework::LibraryType::kCUDNN;
|
||
|
}
|
||
|
#endif
|
||
|
return framework::OpKernelType(
|
||
|
framework::ToDataType(ctx.Input<Tensor>("X")->type()),
|
||
|
ctx.GetPlace(), framework::DataLayout::kAnyLayout, library_);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
class GridSampleOpMaker : public framework::OpProtoAndCheckerMaker {
|
||
|
public:
|
||
|
void Make() override {
|
||
|
AddInput(
|
||
|
"X",
|
||
|
"(Tensor) The input tensor of GridSampleOp, "
|
||
|
"This is a 4-D tensor with shape of [N, C, H, W]");
|
||
|
AddInput(
|
||
|
"Grid",
|
||
|
"(Tensor) The output of AffineGridOp, "
|
||
|
"This is a 4-D tensor with shape of [N, H, W, 2]");
|
||
|
AddOutput(
|
||
|
"Output",
|
||
|
"(Tensor) Output tensor with shape [N, C, H, W]");
|
||
|
AddAttr<bool>(
|
||
|
"use_cudnn",
|
||
|
"(bool, default false) Only used in cudnn kernel, need install cudnn")
|
||
|
.SetDefault(true);
|
||
|
|
||
|
AddComment(R"DOC(
|
||
|
It sample input X by grid gennerate by AffineGridOp.
|
||
|
)DOC");
|
||
|
}
|
||
|
};
|
||
|
|
||
|
class GridSampleOpGrad : public framework::OperatorWithKernel {
|
||
|
public:
|
||
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
||
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
||
|
//TO DO
|
||
|
}
|
||
|
|
||
|
protected:
|
||
|
framework::OpKernelType GetExpectedKernelType(
|
||
|
const framework::ExecutionContext& ctx) const override {
|
||
|
framework::LibraryType library_{framework::LibraryType::kPlain};
|
||
|
#ifdef PADDLE_WITH_CUDA
|
||
|
if (platform::CanCUDNNBeUsed(ctx)) {
|
||
|
library_ = framework::LibraryType::kCUDNN;
|
||
|
}
|
||
|
#endif
|
||
|
return framework::OpKernelType(
|
||
|
framework::ToDataType(ctx.Input<Tensor>("X")->type()),
|
||
|
ctx.GetPlace(), framework::DataLayout::kAnyLayout, library_);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
class GridSampleGradMaker : public framework::SingleGradOpDescMaker {
|
||
|
public:
|
||
|
using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
|
||
|
|
||
|
protected:
|
||
|
std::unique_ptr<framework::OpDesc> Apply() const override {
|
||
|
auto* op = new framework::OpDesc();
|
||
|
op->SetType("grid_sampler_grad");
|
||
|
op->SetInput("X", Input("X"));
|
||
|
op->SetInput("Grid", Input("Grid"));
|
||
|
op->SetInput(framework::GradVarName("Output"), OutputGrad("Output"));
|
||
|
|
||
|
op->SetAttrMap(Attrs());
|
||
|
|
||
|
op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
|
||
|
op->SetOutput(framework::GradVarName("Grid"), InputGrad("Grid"));
|
||
|
return std::unique_ptr<framework::OpDesc>(op);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
} // namespace operators
|
||
|
} // namespace paddle
|
||
|
|
||
|
namespace ops = paddle::operators;
|
||
|
REGISTER_OPERATOR(grid_sampler, ops::GridSampleOp, ops::GridSampleOpMaker,
|
||
|
ops::GridSampleGradMaker);
|
||
|
REGISTER_OPERATOR(grid_sampler_grad, ops::GridSampleOpGrad);
|
||
|
|
||
|
REGISTER_OP_CPU_KERNEL(
|
||
|
grid_sampler,
|
||
|
ops::GridSampleOpKernel<paddle::platform::CPUDeviceContext, float>,
|
||
|
ops::GridSampleOpKernel<paddle::platform::CPUDeviceContext, double>);
|
||
|
REGISTER_OP_CPU_KERNEL(
|
||
|
grid_sampler_grad,
|
||
|
ops::GridSampleGradOpKernel<paddle::platform::CPUDeviceContext, float>,
|
||
|
ops::GridSampleGradOpKernel<paddle::platform::CPUDeviceContext, double>);
|