|
|
|
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
//
|
|
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
// you may not use this file except in compliance with the License.
|
|
|
|
// You may obtain a copy of the License at
|
|
|
|
//
|
|
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
//
|
|
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
// See the License for the specific language governing permissions and
|
|
|
|
// limitations under the License.
|
|
|
|
|
|
|
|
#include "paddle/fluid/imperative/tracer.h"
|
|
|
|
|
|
|
|
namespace paddle {
|
|
|
|
namespace imperative {
|
|
|
|
|
|
|
|
void CreateGradOp(const framework::OpDesc& op_desc,
|
|
|
|
const std::unordered_set<std::string>& no_grad_set,
|
|
|
|
const std::vector<framework::BlockDesc*>& grad_sub_block,
|
|
|
|
framework::OpDesc** grad_op_desc,
|
|
|
|
std::unordered_map<std::string, std::string>* grad_to_var) {
|
|
|
|
std::vector<std::unique_ptr<framework::OpDesc>> grad_op_descs =
|
|
|
|
framework::OpInfoMap::Instance()
|
|
|
|
.Get(op_desc.Type())
|
|
|
|
.GradOpMaker()(op_desc, no_grad_set, grad_to_var, grad_sub_block);
|
|
|
|
PADDLE_ENFORCE(grad_op_descs.size() == 1, "Only support 1 grad op now.");
|
|
|
|
// TODO(panyx0718): Leak?
|
|
|
|
*grad_op_desc = grad_op_descs[0].release();
|
|
|
|
}
|
|
|
|
|
|
|
|
void InitVar(framework::Variable* var, framework::Variable* grad_var) {
|
|
|
|
auto& var_t = var->Get<framework::LoDTensor>();
|
|
|
|
float* data =
|
|
|
|
grad_var->GetMutable<framework::LoDTensor>()->mutable_data<float>(
|
|
|
|
var_t.dims(), platform::CPUPlace());
|
|
|
|
std::fill(data, data + var_t.numel(), 0.0);
|
|
|
|
}
|
|
|
|
|
|
|
|
void Tracer::Trace(OpBase* op, const VarBasePtrMap& inputs,
|
|
|
|
const VarBasePtrMap& outputs, framework::BlockDesc* block,
|
|
|
|
const bool stop_gradient) {
|
|
|
|
std::map<std::string, VarBase*> vars;
|
|
|
|
|
|
|
|
framework::OpDesc* op_desc = op->op_desc_;
|
|
|
|
VLOG(3) << "tracer tracing " << op_desc->Type();
|
|
|
|
op_desc->InferShape(*block);
|
|
|
|
op_desc->InferVarType(block);
|
|
|
|
std::unique_ptr<framework::OperatorBase> op_base =
|
|
|
|
framework::OpRegistry::CreateOp(*op_desc);
|
|
|
|
|
|
|
|
framework::VariableValueMap invars_map;
|
|
|
|
framework::VariableValueMap outvars_map;
|
|
|
|
|
|
|
|
op->input_vars_ = inputs;
|
|
|
|
for (auto it : op->input_vars_) {
|
|
|
|
auto& invars = invars_map[it.first];
|
|
|
|
for (VarBase* inp : it.second) {
|
|
|
|
PADDLE_ENFORCE_NOT_NULL(inp->var_, "op %s input %s nullptr",
|
|
|
|
op->op_desc_->Type(), inp->var_desc_->Name());
|
|
|
|
|
|
|
|
invars.push_back(inp->var_);
|
|
|
|
vars[inp->var_desc_->Name()] = inp;
|
|
|
|
if (inp->pre_op_) {
|
|
|
|
op->pre_ops_[it.first].push_back(inp->pre_op_);
|
|
|
|
op->pre_ops_out_idx_[it.first].push_back(inp->pre_op_out_idx_);
|
|
|
|
} else {
|
|
|
|
op->pre_ops_[it.first].push_back(nullptr);
|
|
|
|
}
|
|
|
|
VLOG(3) << "input vname " << inp->var_desc_->Name() << " "
|
|
|
|
<< inp->var_->IsInitialized();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
op->output_vars_ = outputs;
|
|
|
|
for (auto it : op->output_vars_) {
|
|
|
|
auto& outvars = outvars_map[it.first];
|
|
|
|
const std::vector<VarBase*>& outputs = it.second;
|
|
|
|
for (size_t i = 0; i < outputs.size(); ++i) {
|
|
|
|
VarBase* out = outputs[i];
|
|
|
|
outvars.push_back(out->var_);
|
|
|
|
vars[out->var_desc_->Name()] = out;
|
|
|
|
|
|
|
|
framework::VarDesc* var_desc = block->FindVar(out->var_desc_->Name());
|
|
|
|
if (var_desc->GetType() == framework::proto::VarType::LOD_TENSOR) {
|
|
|
|
out->var_->GetMutable<framework::LoDTensor>();
|
|
|
|
} else {
|
|
|
|
LOG(ERROR) << "tracer doesn't support yet";
|
|
|
|
}
|
|
|
|
out->stop_gradient_ = stop_gradient;
|
|
|
|
out->pre_op_ = op;
|
|
|
|
out->pre_op_out_name_ = it.first;
|
|
|
|
out->pre_op_out_idx_ = i;
|
|
|
|
|
|
|
|
VLOG(3) << "output vname " << out->var_desc_->Name() << " "
|
|
|
|
<< out->var_->IsInitialized();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
VLOG(3) << "tracer running " << op_desc->Type();
|
|
|
|
framework::RuntimeContext ctx(invars_map, outvars_map);
|
|
|
|
|
|
|
|
// TODO(panyx0718): Cache p.
|
|
|
|
framework::OperatorWithKernel* op_kernel =
|
|
|
|
dynamic_cast<framework::OperatorWithKernel*>(op_base.get());
|
|
|
|
PADDLE_ENFORCE_NOT_NULL(op_kernel, "only support op with kernel");
|
|
|
|
|
|
|
|
framework::Scope scope;
|
|
|
|
platform::CPUPlace place;
|
|
|
|
PreparedOp p = PreparedOp::Prepare(ctx, *op_kernel, place);
|
|
|
|
p.op.RuntimeInferShape(scope, place, ctx);
|
|
|
|
p.func(framework::ExecutionContext(p.op, scope, *p.dev_ctx, p.ctx));
|
|
|
|
|
|
|
|
if (!stop_gradient) {
|
|
|
|
framework::OpDesc* grad_op_desc;
|
|
|
|
// TODO(panyx): Is this leaked?
|
|
|
|
std::unique_ptr<std::unordered_map<std::string, std::string>> grad_to_var(
|
|
|
|
new std::unordered_map<std::string, std::string>());
|
|
|
|
CreateGradOp(*op_desc, {}, {block}, &grad_op_desc, grad_to_var.get());
|
|
|
|
op->grad_op_desc_ = grad_op_desc;
|
|
|
|
|
|
|
|
for (auto it : grad_op_desc->Inputs()) {
|
|
|
|
auto& grad_in_vars = op->grad_input_vars_[it.first];
|
|
|
|
for (const std::string& grad_invar : it.second) {
|
|
|
|
block->FindRecursiveOrCreateVar(grad_invar);
|
|
|
|
auto var_it = grad_to_var->find(grad_invar);
|
|
|
|
if (var_it == grad_to_var->end()) {
|
|
|
|
auto fwd_var_it = vars.find(grad_invar);
|
|
|
|
PADDLE_ENFORCE(fwd_var_it != vars.end());
|
|
|
|
// Forward inputs or outputs.
|
|
|
|
grad_in_vars.push_back(fwd_var_it->second->var_);
|
|
|
|
} else {
|
|
|
|
VarBase* var = vars[var_it->second];
|
|
|
|
if (!var->grads_->var_->IsInitialized()) {
|
|
|
|
InitVar(var->var_, var->grads_->var_);
|
|
|
|
}
|
|
|
|
// Douts.
|
|
|
|
grad_in_vars.push_back(var->grads_->var_);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
for (auto it : grad_op_desc->Outputs()) {
|
|
|
|
auto& grad_out_vars = op->grad_output_vars_[it.first];
|
|
|
|
for (const std::string& grad_outvar : it.second) {
|
|
|
|
block->FindRecursiveOrCreateVar(grad_outvar);
|
|
|
|
auto var_it = grad_to_var->find(grad_outvar);
|
|
|
|
PADDLE_ENFORCE(var_it != grad_to_var->end());
|
|
|
|
VarBase* var = vars[var_it->second];
|
|
|
|
if (!var->grads_->var_->IsInitialized()) {
|
|
|
|
InitVar(var->var_, var->grads_->var_);
|
|
|
|
}
|
|
|
|
grad_out_vars.push_back(var->grads_->var_);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
op->block_ = block;
|
|
|
|
}
|
|
|
|
|
|
|
|
std::vector<VarBase*> Tracer::PyTrace(OpBase* op,
|
|
|
|
const std::vector<VarBase*>& inputs,
|
|
|
|
bool stop_gradient) {
|
|
|
|
VLOG(3) << "py_trace";
|
|
|
|
op->input_vars_["X"] = inputs;
|
|
|
|
op->output_vars_["Out"] = PyLayer::Apply(op->forward_id_, inputs);
|
|
|
|
for (VarBase* inp : inputs) {
|
|
|
|
if (inp->pre_op_) {
|
|
|
|
op->pre_ops_["X"].push_back(inp->pre_op_);
|
|
|
|
op->pre_ops_out_idx_["X"].push_back(inp->pre_op_out_idx_);
|
|
|
|
} else {
|
|
|
|
op->pre_ops_["X"].push_back(nullptr);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
auto& outputs = op->output_vars_["Out"];
|
|
|
|
for (size_t i = 0; i < outputs.size(); ++i) {
|
|
|
|
VarBase* out = outputs[i];
|
|
|
|
out->stop_gradient_ = stop_gradient;
|
|
|
|
out->pre_op_ = op;
|
|
|
|
out->pre_op_out_name_ = "Out";
|
|
|
|
out->pre_op_out_idx_ = i;
|
|
|
|
}
|
|
|
|
if (!stop_gradient) {
|
|
|
|
auto& grad_input_vars = op->grad_input_vars_["X@GRAD"];
|
|
|
|
auto& grad_output_vars = op->grad_output_vars_["Out@GRAD"];
|
|
|
|
|
|
|
|
for (const VarBase* inp : inputs) {
|
|
|
|
grad_input_vars.push_back(inp->var_);
|
|
|
|
}
|
|
|
|
for (VarBase* out : outputs) {
|
|
|
|
grad_input_vars.push_back(out->var_);
|
|
|
|
}
|
|
|
|
for (VarBase* out : outputs) {
|
|
|
|
grad_input_vars.push_back(out->grads_->var_);
|
|
|
|
if (!grad_input_vars.back()->IsInitialized()) {
|
|
|
|
InitVar(out->var_, grad_input_vars.back());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
for (const VarBase* inp : inputs) {
|
|
|
|
grad_output_vars.push_back(inp->grads_->var_);
|
|
|
|
if (!grad_output_vars.back()->IsInitialized()) {
|
|
|
|
InitVar(inp->var_, grad_output_vars.back());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return outputs;
|
|
|
|
}
|
|
|
|
|
|
|
|
} // namespace imperative
|
|
|
|
} // namespace paddle
|