You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
86 lines
2.8 KiB
86 lines
2.8 KiB
8 years ago
|
# edit-mode: -*- python -*-
|
||
|
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
from paddle.trainer_config_helpers import *
|
||
|
|
||
|
######################## data source ################################
|
||
|
define_py_data_sources2(
|
||
|
train_list='gserver/tests/Sequence/dummy.list',
|
||
|
test_list=None,
|
||
|
module='rnn_data_provider',
|
||
|
obj='process_mixed')
|
||
|
|
||
|
settings(batch_size=2, learning_rate=0.01)
|
||
|
######################## network configure ################################
|
||
|
dict_dim = 10
|
||
|
word_dim = 2
|
||
|
hidden_dim = 2
|
||
|
label_dim = 2
|
||
|
|
||
|
data1 = data_layer(name="word1", size=dict_dim)
|
||
|
data2 = data_layer(name="word2", size=dict_dim)
|
||
|
label = data_layer(name="label", size=label_dim)
|
||
|
|
||
|
encoding = embedding_layer(input=data2, size=word_dim)
|
||
|
|
||
|
subseq = embedding_layer(input=data1, size=word_dim)
|
||
|
seq = embedding_layer(input=data2, size=word_dim)
|
||
|
nonseq = embedding_layer(input=label, size=word_dim)
|
||
|
|
||
|
|
||
|
# This hierarchical RNN is designed to be equivalent to the simple RNN in
|
||
|
# sequence_rnn_multi_unequalength_inputs.conf
|
||
|
def outer_step(subseq, seq, nonseq, encoding):
|
||
|
outer_mem = memory(name="outer_rnn_state", size=hidden_dim)
|
||
|
|
||
|
def inner_step(subseq, seq, nonseq):
|
||
|
inner_mem = memory(
|
||
|
name="inner_rnn_state", size=hidden_dim, boot_layer=outer_mem)
|
||
|
|
||
|
out = fc_layer(
|
||
|
input=[subseq, seq, nonseq, inner_mem],
|
||
|
size=hidden_dim,
|
||
|
act=TanhActivation(),
|
||
|
bias_attr=True,
|
||
|
name='inner_rnn_state')
|
||
|
return out
|
||
|
|
||
|
decoder = recurrent_group(
|
||
|
step=inner_step, name='inner', input=[subseq, seq, nonseq])
|
||
|
last = last_seq(name="outer_rnn_state", input=decoder)
|
||
|
context = simple_attention(
|
||
|
encoded_sequence=encoding, encoded_proj=encoding, decoder_state=last)
|
||
|
return context
|
||
|
|
||
|
|
||
|
out = recurrent_group(
|
||
|
name="outer",
|
||
|
step=outer_step,
|
||
|
input=[
|
||
|
subseq, expand_layer(
|
||
|
seq, expand_as=subseq,
|
||
|
expand_level=ExpandLevel.FROM_SEQUENCE), expand_layer(
|
||
|
nonseq,
|
||
|
expand_as=subseq,
|
||
|
expand_level=ExpandLevel.FROM_NO_SEQUENCE),
|
||
|
StaticInput(encoding)
|
||
|
])
|
||
|
|
||
|
rep = last_seq(input=out)
|
||
|
prob = fc_layer(
|
||
|
size=label_dim, input=rep, act=SoftmaxActivation(), bias_attr=True)
|
||
|
|
||
|
outputs(classification_cost(input=prob, label=label))
|