|
|
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
you may not use this file except in compliance with the License.
|
|
|
|
You may obtain a copy of the License at
|
|
|
|
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
See the License for the specific language governing permissions and
|
|
|
|
limitations under the License. */
|
|
|
|
|
|
|
|
#include "paddle/fluid/memory/memcpy.h"
|
|
|
|
#include "paddle/fluid/operators/roi_pool_op.h"
|
|
|
|
#include "paddle/fluid/platform/cuda_primitives.h"
|
|
|
|
|
|
|
|
namespace paddle {
|
|
|
|
namespace operators {
|
|
|
|
|
|
|
|
using Tensor = framework::Tensor;
|
|
|
|
using LoDTensor = framework::LoDTensor;
|
|
|
|
|
|
|
|
static constexpr int kNumCUDAThreads = 512;
|
|
|
|
static constexpr int kNumMaxinumNumBlocks = 4096;
|
|
|
|
|
|
|
|
static inline int NumBlocks(const int N) {
|
|
|
|
return std::min((N + kNumCUDAThreads - 1) / kNumCUDAThreads,
|
|
|
|
kNumMaxinumNumBlocks);
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
__global__ void GPUROIPoolForward(
|
|
|
|
const int nthreads, const T* input_data, const T* input_rois,
|
|
|
|
const float spatial_scale, const int channels, const int height,
|
|
|
|
const int width, const int pooled_height, const int pooled_width,
|
|
|
|
int* roi_batch_id_data, T* output_data, int64_t* argmax_data) {
|
|
|
|
int index = blockIdx.x * blockDim.x + threadIdx.x;
|
|
|
|
int offset = blockDim.x * gridDim.x;
|
|
|
|
for (size_t i = index; i < nthreads; i += offset) {
|
|
|
|
int pw = i % pooled_width;
|
|
|
|
int ph = (i / pooled_width) % pooled_height;
|
|
|
|
int c = (i / pooled_width / pooled_height) % channels;
|
|
|
|
int n = i / pooled_width / pooled_height / channels;
|
|
|
|
|
|
|
|
const T* offset_input_rois = input_rois + n * kROISize;
|
|
|
|
int roi_batch_ind = roi_batch_id_data[n];
|
|
|
|
int roi_start_w = round(offset_input_rois[0] * spatial_scale);
|
|
|
|
int roi_start_h = round(offset_input_rois[1] * spatial_scale);
|
|
|
|
int roi_end_w = round(offset_input_rois[2] * spatial_scale);
|
|
|
|
int roi_end_h = round(offset_input_rois[3] * spatial_scale);
|
|
|
|
|
|
|
|
int roi_width = max(roi_end_w - roi_start_w + 1, 1);
|
|
|
|
int roi_height = max(roi_end_h - roi_start_h + 1, 1);
|
|
|
|
|
|
|
|
int hstart = static_cast<int>(floor(static_cast<double>(ph) *
|
|
|
|
static_cast<double>(roi_height) /
|
|
|
|
static_cast<double>(pooled_height)));
|
|
|
|
int wstart = static_cast<int>(floor(static_cast<double>(pw) *
|
|
|
|
static_cast<double>(roi_width) /
|
|
|
|
static_cast<double>(pooled_width)));
|
|
|
|
int hend = static_cast<int>(ceil(static_cast<double>(ph + 1) *
|
|
|
|
static_cast<double>(roi_height) /
|
|
|
|
static_cast<double>(pooled_height)));
|
|
|
|
int wend = static_cast<int>(ceil(static_cast<double>(pw + 1) *
|
|
|
|
static_cast<double>(roi_width) /
|
|
|
|
static_cast<double>(pooled_width)));
|
|
|
|
hstart = min(max(hstart + roi_start_h, 0), height);
|
|
|
|
hend = min(max(hend + roi_start_h, 0), height);
|
|
|
|
wstart = min(max(wstart + roi_start_w, 0), width);
|
|
|
|
wend = min(max(wend + roi_start_w, 0), width);
|
|
|
|
bool is_empty = (hend <= hstart) || (wend <= wstart);
|
|
|
|
|
|
|
|
T maxval = is_empty ? 0 : -std::numeric_limits<T>::max();
|
|
|
|
int maxidx = -1;
|
|
|
|
const T* offset_input_data =
|
|
|
|
input_data + (roi_batch_ind * channels + c) * height * width;
|
|
|
|
for (int h = hstart; h < hend; ++h) {
|
|
|
|
for (int w = wstart; w < wend; ++w) {
|
|
|
|
int input_data_index = h * width + w;
|
|
|
|
if (offset_input_data[input_data_index] > maxval) {
|
|
|
|
maxval = offset_input_data[input_data_index];
|
|
|
|
maxidx = input_data_index;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
output_data[i] = maxval;
|
|
|
|
if (argmax_data) {
|
|
|
|
argmax_data[i] = maxidx;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
__global__ void GPUROIPoolBackward(
|
|
|
|
const int nthreads, const T* input_rois, const T* output_grad,
|
|
|
|
const int64_t* argmax_data, const int num_rois, const float spatial_scale,
|
|
|
|
const int channels, const int height, const int width,
|
|
|
|
const int pooled_height, const int pooled_width, int* roi_batch_id_data,
|
|
|
|
T* input_grad) {
|
|
|
|
int index = blockIdx.x * blockDim.x + threadIdx.x;
|
|
|
|
int offset = blockDim.x * gridDim.x;
|
|
|
|
for (int i = index; i < nthreads; i += offset) {
|
|
|
|
int pw = i % pooled_width;
|
|
|
|
int ph = (i / pooled_width) % pooled_height;
|
|
|
|
int c = (i / pooled_width / pooled_height) % channels;
|
|
|
|
int n = i / pooled_width / pooled_height / channels;
|
|
|
|
|
|
|
|
int roi_batch_ind = roi_batch_id_data[n];
|
|
|
|
int input_offset = (roi_batch_ind * channels + c) * height * width;
|
|
|
|
int output_offset = (n * channels + c) * pooled_height * pooled_width;
|
|
|
|
const T* offset_output_grad = output_grad + output_offset;
|
|
|
|
T* offset_input_grad = input_grad + input_offset;
|
|
|
|
const int64_t* offset_argmax_data = argmax_data + output_offset;
|
|
|
|
|
|
|
|
int argmax = offset_argmax_data[ph * pooled_width + pw];
|
|
|
|
if (argmax != -1) {
|
|
|
|
platform::CudaAtomicAdd(
|
|
|
|
offset_input_grad + argmax,
|
|
|
|
static_cast<T>(offset_output_grad[ph * pooled_width + pw]));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename Place, typename T>
|
|
|
|
class GPUROIPoolOpKernel : public framework::OpKernel<T> {
|
|
|
|
public:
|
|
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
|
|
auto* in = ctx.Input<Tensor>("X");
|
|
|
|
auto* rois = ctx.Input<LoDTensor>("ROIs");
|
|
|
|
auto* out = ctx.Output<Tensor>("Out");
|
|
|
|
auto* argmax = ctx.Output<Tensor>("Argmax");
|
|
|
|
|
|
|
|
auto pooled_height = ctx.Attr<int>("pooled_height");
|
|
|
|
auto pooled_width = ctx.Attr<int>("pooled_width");
|
|
|
|
auto spatial_scale = ctx.Attr<float>("spatial_scale");
|
|
|
|
|
|
|
|
auto in_dims = in->dims();
|
|
|
|
int batch_size = in_dims[0];
|
|
|
|
auto in_stride = framework::stride(in_dims);
|
|
|
|
int channels = in_dims[1];
|
|
|
|
int height = in_dims[2];
|
|
|
|
int width = in_dims[3];
|
|
|
|
|
|
|
|
int rois_num = rois->dims()[0];
|
|
|
|
|
|
|
|
if (rois_num == 0) return;
|
|
|
|
|
|
|
|
int output_size = out->numel();
|
|
|
|
int blocks = NumBlocks(output_size);
|
|
|
|
int threads = kNumCUDAThreads;
|
|
|
|
|
|
|
|
framework::Tensor roi_batch_id_list;
|
|
|
|
roi_batch_id_list.Resize({rois_num});
|
|
|
|
auto cplace = platform::CPUPlace();
|
|
|
|
int* roi_batch_id_data = roi_batch_id_list.mutable_data<int>(cplace);
|
|
|
|
auto rois_lod = rois->lod().back();
|
|
|
|
int rois_batch_size = rois_lod.size() - 1;
|
|
|
|
PADDLE_ENFORCE_EQ(
|
|
|
|
rois_batch_size, batch_size,
|
|
|
|
"The rois_batch_size and imgs batch_size must be the same.");
|
|
|
|
int rois_num_with_lod = rois_lod[rois_batch_size];
|
|
|
|
PADDLE_ENFORCE_EQ(rois_num, rois_num_with_lod,
|
|
|
|
"The rois_num from input and lod must be the same.");
|
|
|
|
for (int n = 0; n < rois_batch_size; ++n) {
|
|
|
|
for (size_t i = rois_lod[n]; i < rois_lod[n + 1]; ++i) {
|
|
|
|
roi_batch_id_data[i] = n;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
auto& dev_ctx = ctx.cuda_device_context();
|
|
|
|
auto& allocator =
|
|
|
|
platform::DeviceTemporaryAllocator::Instance().Get(dev_ctx);
|
|
|
|
int bytes = roi_batch_id_list.numel() * sizeof(int);
|
|
|
|
auto roi_ptr = allocator.Allocate(bytes);
|
|
|
|
int* roi_id_data = reinterpret_cast<int*>(roi_ptr->ptr());
|
|
|
|
const auto gplace = boost::get<platform::CUDAPlace>(ctx.GetPlace());
|
|
|
|
memory::Copy(gplace, roi_id_data, cplace, roi_batch_id_data, bytes,
|
|
|
|
dev_ctx.stream());
|
|
|
|
|
|
|
|
GPUROIPoolForward<T><<<blocks, threads, 0, dev_ctx.stream()>>>(
|
|
|
|
output_size, in->data<T>(), rois->data<T>(), spatial_scale, channels,
|
|
|
|
height, width, pooled_height, pooled_width, roi_id_data,
|
|
|
|
out->mutable_data<T>(ctx.GetPlace()),
|
|
|
|
argmax->mutable_data<int64_t>(ctx.GetPlace()));
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
template <typename Place, typename T>
|
|
|
|
class GPUROIPoolGradOpKernel : public framework::OpKernel<T> {
|
|
|
|
public:
|
|
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
|
|
auto* in = ctx.Input<Tensor>("X");
|
|
|
|
auto* rois = ctx.Input<LoDTensor>("ROIs");
|
|
|
|
auto* argmax = ctx.Input<Tensor>("Argmax");
|
|
|
|
|
|
|
|
auto* out_grad = ctx.Input<Tensor>(framework::GradVarName("Out"));
|
|
|
|
auto* x_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
|
|
|
|
|
|
|
|
auto pooled_height = ctx.Attr<int>("pooled_height");
|
|
|
|
auto pooled_width = ctx.Attr<int>("pooled_width");
|
|
|
|
auto spatial_scale = ctx.Attr<float>("spatial_scale");
|
|
|
|
|
|
|
|
int rois_num = rois->dims()[0];
|
|
|
|
int channels = in->dims()[1];
|
|
|
|
int height = in->dims()[2];
|
|
|
|
int width = in->dims()[3];
|
|
|
|
|
|
|
|
if (x_grad) {
|
|
|
|
framework::Tensor roi_batch_id_list;
|
|
|
|
roi_batch_id_list.Resize({rois_num});
|
|
|
|
auto cplace = platform::CPUPlace();
|
|
|
|
int* roi_batch_id_data = roi_batch_id_list.mutable_data<int>(cplace);
|
|
|
|
auto rois_lod = rois->lod().back();
|
|
|
|
int rois_batch_size = rois_lod.size() - 1;
|
|
|
|
for (int n = 0; n < rois_batch_size; ++n) {
|
|
|
|
for (size_t i = rois_lod[n]; i < rois_lod[n + 1]; ++i) {
|
|
|
|
roi_batch_id_data[i] = n;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
auto& dev_ctx = ctx.cuda_device_context();
|
|
|
|
auto& allocator =
|
|
|
|
platform::DeviceTemporaryAllocator::Instance().Get(dev_ctx);
|
|
|
|
int bytes = roi_batch_id_list.numel() * sizeof(int);
|
|
|
|
auto roi_ptr = allocator.Allocate(bytes);
|
|
|
|
int* roi_id_data = reinterpret_cast<int*>(roi_ptr->ptr());
|
|
|
|
const auto gplace = boost::get<platform::CUDAPlace>(ctx.GetPlace());
|
|
|
|
memory::Copy(gplace, roi_id_data, cplace, roi_batch_id_data, bytes,
|
|
|
|
dev_ctx.stream());
|
|
|
|
|
|
|
|
x_grad->mutable_data<T>(ctx.GetPlace());
|
|
|
|
math::SetConstant<Place, T> set_zero;
|
|
|
|
set_zero(dev_ctx, x_grad, static_cast<T>(0));
|
|
|
|
|
|
|
|
int output_grad_size = out_grad->numel();
|
|
|
|
int blocks = NumBlocks(output_grad_size);
|
|
|
|
int threads = kNumCUDAThreads;
|
|
|
|
|
|
|
|
if (output_grad_size > 0) {
|
|
|
|
GPUROIPoolBackward<T><<<blocks, threads, 0, dev_ctx.stream()>>>(
|
|
|
|
output_grad_size, rois->data<T>(), out_grad->data<T>(),
|
|
|
|
argmax->data<int64_t>(), rois_num, spatial_scale, channels, height,
|
|
|
|
width, pooled_height, pooled_width, roi_id_data,
|
|
|
|
x_grad->mutable_data<T>(ctx.GetPlace()));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
} // namespace operators
|
|
|
|
} // namespace paddle
|
|
|
|
|
|
|
|
namespace ops = paddle::operators;
|
|
|
|
REGISTER_OP_CUDA_KERNEL(
|
|
|
|
roi_pool,
|
|
|
|
ops::GPUROIPoolOpKernel<paddle::platform::CUDADeviceContext, float>,
|
|
|
|
ops::GPUROIPoolOpKernel<paddle::platform::CUDADeviceContext, double>);
|
|
|
|
REGISTER_OP_CUDA_KERNEL(
|
|
|
|
roi_pool_grad,
|
|
|
|
ops::GPUROIPoolGradOpKernel<paddle::platform::CUDADeviceContext, float>,
|
|
|
|
ops::GPUROIPoolGradOpKernel<paddle::platform::CUDADeviceContext, double>);
|