You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
138 lines
5.3 KiB
138 lines
5.3 KiB
8 years ago
|
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.
|
||
|
|
||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
you may not use this file except in compliance with the License.
|
||
|
You may obtain a copy of the License at
|
||
|
|
||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||
|
|
||
|
Unless required by applicable law or agreed to in writing, software
|
||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
See the License for the specific language governing permissions and
|
||
|
limitations under the License. */
|
||
|
|
||
|
#include "Layer.h"
|
||
|
#include "paddle/math/Matrix.h"
|
||
|
#include "paddle/math/BaseMatrix.h"
|
||
|
|
||
|
namespace paddle {
|
||
|
|
||
|
class PriorBoxLayer : public Layer {
|
||
|
public:
|
||
|
explicit PriorBoxLayer(const LayerConfig& config) : Layer(config) {}
|
||
|
bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);
|
||
|
void forward(PassType passType);
|
||
|
void backward(const UpdateCallback& callback) {}
|
||
|
int numPriors_;
|
||
|
std::vector<int> minSize_;
|
||
|
std::vector<int> maxSize_;
|
||
|
std::vector<float> aspectRatio_;
|
||
|
std::vector<float> variance_;
|
||
|
MatrixPtr buffer_;
|
||
|
};
|
||
|
|
||
|
bool PriorBoxLayer::init(const LayerMap& layerMap,
|
||
|
const ParameterMap& parameterMap) {
|
||
|
Layer::init(layerMap, parameterMap);
|
||
|
std::copy(config_.inputs(0).priorbox_conf().min_size().begin(),
|
||
|
config_.inputs(0).priorbox_conf().min_size().end(),
|
||
|
std::back_inserter(minSize_));
|
||
|
std::copy(config_.inputs(0).priorbox_conf().max_size().begin(),
|
||
|
config_.inputs(0).priorbox_conf().max_size().end(),
|
||
|
std::back_inserter(maxSize_));
|
||
|
std::copy(config_.inputs(0).priorbox_conf().aspect_ratio().begin(),
|
||
|
config_.inputs(0).priorbox_conf().aspect_ratio().end(),
|
||
|
std::back_inserter(aspectRatio_));
|
||
|
std::copy(config_.inputs(0).priorbox_conf().variance().begin(),
|
||
|
config_.inputs(0).priorbox_conf().variance().end(),
|
||
|
std::back_inserter(variance_));
|
||
|
// flip
|
||
|
int input_ratio_length = aspectRatio_.size();
|
||
|
for (int index = 0; index < input_ratio_length; index++)
|
||
|
aspectRatio_.push_back(1 / aspectRatio_[index]);
|
||
|
aspectRatio_.push_back(1.);
|
||
|
numPriors_ = aspectRatio_.size();
|
||
|
if (maxSize_.size() > 0)
|
||
|
numPriors_++;
|
||
|
buffer_ = Matrix::create(1, 1, false, false);
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
void PriorBoxLayer::forward(PassType passType) {
|
||
|
Layer::forward(passType);
|
||
|
auto input = getInput(0);
|
||
|
int layer_width = input.getFrameWidth();
|
||
|
int layer_height = input.getFrameHeight();
|
||
|
|
||
|
MatrixPtr inV1 = getInputValue(1);
|
||
|
int image_width = inV1->getElement(0, 0);
|
||
|
int image_height = inV1->getElement(0, 1);
|
||
|
float step_w = static_cast<float>(image_width) / layer_width;
|
||
|
float step_h = static_cast<float>(image_height) / layer_height;
|
||
|
int dim = layer_height * layer_width * numPriors_ * 4;
|
||
|
reserveOutput(1, dim * 2);
|
||
|
// use a cpu buffer to compute
|
||
|
Matrix::resizeOrCreate(buffer_, 1, dim * 2, false, false);
|
||
|
auto* tmp_ptr = buffer_->getData();
|
||
|
|
||
|
int idx = 0;
|
||
|
for (int h = 0; h < layer_height; ++h) {
|
||
|
for (int w = 0; w < layer_width; ++w) {
|
||
|
float center_x = (w + 0.5) * step_w;
|
||
|
float center_y = (h + 0.5) * step_h;
|
||
|
int min_size = 0;
|
||
|
for (size_t s = 0; s < minSize_.size(); s++) {
|
||
|
// first prior.
|
||
|
min_size = minSize_[s];
|
||
|
int box_width = min_size;
|
||
|
int box_height = min_size;
|
||
|
// xmin, ymin, xmax, ymax.
|
||
|
tmp_ptr[idx++] = (center_x - box_width / 2.) / image_width;
|
||
|
tmp_ptr[idx++] = (center_y - box_height / 2.) / image_height;
|
||
|
tmp_ptr[idx++] = (center_x + box_width / 2.) / image_width;
|
||
|
tmp_ptr[idx++] = (center_y + box_height / 2.) / image_height;
|
||
|
|
||
|
if (maxSize_.size() > 0) {
|
||
|
CHECK_EQ(minSize_.size(), maxSize_.size());
|
||
|
// second prior.
|
||
|
for (size_t s = 0; s < maxSize_.size(); s++) {
|
||
|
int max_size = maxSize_[s];
|
||
|
box_width = box_height = sqrt(min_size * max_size);
|
||
|
tmp_ptr[idx++] = (center_x - box_width / 2.) / image_width;
|
||
|
tmp_ptr[idx++] = (center_y - box_height / 2.) / image_height;
|
||
|
tmp_ptr[idx++] = (center_x + box_width / 2.) / image_width;
|
||
|
tmp_ptr[idx++] = (center_y + box_height / 2.) / image_height;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
// rest of priors.
|
||
|
for (size_t r = 0; r < aspectRatio_.size(); r++) {
|
||
|
float ar = aspectRatio_[r];
|
||
|
if (fabs(ar - 1.) < 1e-6)
|
||
|
continue;
|
||
|
float box_width = min_size * sqrt(ar);
|
||
|
float box_height = min_size / sqrt(ar);
|
||
|
tmp_ptr[idx++] = (center_x - box_width / 2.) / image_width;
|
||
|
tmp_ptr[idx++] = (center_y - box_height / 2.) / image_height;
|
||
|
tmp_ptr[idx++] = (center_x + box_width / 2.) / image_width;
|
||
|
tmp_ptr[idx++] = (center_y + box_height / 2.) / image_height;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
// clip the prior's coordidate such that it is within [0, 1]
|
||
|
for (int d = 0; d < dim; ++d)
|
||
|
tmp_ptr[d] = std::min(std::max(tmp_ptr[d], (float)0.), (float)1.);
|
||
|
// set the variance.
|
||
|
for (int h = 0; h < layer_height; h++)
|
||
|
for (int w = 0; w < layer_width; w++)
|
||
|
for (int i = 0; i < numPriors_; i++)
|
||
|
for (int j = 0; j < 4; j++)
|
||
|
tmp_ptr[idx++] = variance_[j];
|
||
|
MatrixPtr outV = getOutputValue();
|
||
|
outV->copyFrom(buffer_->data_, dim * 2);
|
||
|
}
|
||
|
REGISTER_LAYER(priorbox, PriorBoxLayer);
|
||
|
|
||
|
} // namespace paddle
|