You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/framework/ir/graph_test.cc

211 lines
6.7 KiB

7 years ago
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
7 years ago
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/ir/graph.h"
#include "gtest/gtest.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/program_desc.h"
namespace paddle {
namespace framework {
class NOP : public OperatorBase {
public:
NOP(const std::string &type, const VariableNameMap &inputs,
const VariableNameMap &outputs, const AttributeMap &attrs)
: OperatorBase(type, inputs, outputs, attrs) {}
private:
void RunImpl(const Scope &scope,
const platform::Place &place) const override {}
};
class SumOpMaker : public OpProtoAndCheckerMaker {
public:
void Make() {
AddInput("X", "").AsDuplicable();
AddOutput("Out", "").AsDuplicable();
7 years ago
AddComment("");
}
};
class SumOpVarTypeInference : public VarTypeInference {
public:
void operator()(InferVarTypeContext *ctx) const override {
auto &inputs = ctx->Input("X");
7 years ago
auto default_var_type = proto::VarType::SELECTED_ROWS;
bool any_input_is_lod_tensor = std::any_of(
inputs.begin(), inputs.end(), [&ctx](const std::string &name) {
return ctx->GetType(name) == proto::VarType::LOD_TENSOR;
7 years ago
});
if (any_input_is_lod_tensor) {
default_var_type = proto::VarType::LOD_TENSOR;
}
auto out_var_name = ctx->Output("Out").front();
ctx->SetType(out_var_name, default_var_type);
7 years ago
}
};
class DummyOpMaker : public OpProtoAndCheckerMaker {
public:
void Make() {
AddInput("X", "").AsDuplicable();
AddOutput("Out", "").AsDuplicable();
AddComment("");
}
};
class DummyOpVarTypeInference : public VarTypeInference {
public:
void operator()(framework::InferVarTypeContext *ctx) const override {}
};
7 years ago
} // namespace framework
} // namespace paddle
REGISTER_OPERATOR(sum, paddle::framework::NOP, paddle::framework::SumOpMaker,
paddle::framework::SumOpVarTypeInference);
REGISTER_OPERATOR(dummy, paddle::framework::NOP, paddle::framework::SumOpMaker,
paddle::framework::SumOpVarTypeInference);
7 years ago
REGISTER_OPERATOR(sum_without_infer_var_type, paddle::framework::NOP,
paddle::framework::SumOpMaker);
namespace paddle {
namespace framework {
TEST(GraphTest, Basic) {
ProgramDesc prog;
auto *op = prog.MutableBlock(0)->AppendOp();
op->SetType("sum");
op->SetInput("X", {"test_a", "test_b", "test_c"});
op->SetOutput("Out", {"test_out"});
op->SetAttr("op_role", 1);
7 years ago
prog.MutableBlock(0)->Var("test_a")->SetType(proto::VarType::SELECTED_ROWS);
prog.MutableBlock(0)->Var("test_b")->SetType(proto::VarType::SELECTED_ROWS);
prog.MutableBlock(0)->Var("test_c")->SetType(proto::VarType::SELECTED_ROWS);
prog.MutableBlock(0)->Var("test_out");
op->InferVarType(prog.MutableBlock(0));
ASSERT_EQ(proto::VarType::SELECTED_ROWS,
prog.MutableBlock(0)->Var("test_out")->GetType());
prog.MutableBlock(0)->Var("test_b")->SetType(proto::VarType::LOD_TENSOR);
op->InferVarType(prog.MutableBlock(0));
ASSERT_EQ(proto::VarType::LOD_TENSOR,
prog.MutableBlock(0)->Var("test_out")->GetType());
std::unique_ptr<ir::Graph> g(new ir::Graph(prog));
7 years ago
std::vector<ir::Node *> nodes(g->Nodes().begin(), g->Nodes().end());
7 years ago
for (ir::Node *n : nodes) {
if (n->Name() == "sum") {
7 years ago
ASSERT_EQ(n->inputs.size(), 3UL);
ASSERT_EQ(n->outputs.size(), 1UL);
7 years ago
} else if (n->Name() == "test_a" || n->Name() == "test_b" ||
n->Name() == "test_c") {
7 years ago
ASSERT_EQ(n->inputs.size(), 0UL);
ASSERT_EQ(n->outputs.size(), 1UL);
7 years ago
} else if (n->Name() == "test_out") {
7 years ago
ASSERT_EQ(n->inputs.size(), 1UL);
ASSERT_EQ(n->outputs.size(), 0UL);
7 years ago
}
}
ASSERT_EQ(nodes.size(), 5UL);
7 years ago
}
TEST(GraphTest, WriteAfterRead) {
// void Test() {
ProgramDesc prog;
auto *op = prog.MutableBlock(0)->AppendOp();
op->SetType("sum");
op->SetInput("X", {"a"});
op->SetOutput("Out", {"b"});
op->SetAttr("op_role", 1);
op = prog.MutableBlock(0)->AppendOp();
op->SetType("dummy");
op->SetInput("X", {"c"});
op->SetOutput("Out", {"a"});
op->SetAttr("op_role", 1);
prog.MutableBlock(0)->Var("a")->SetType(proto::VarType::LOD_TENSOR);
prog.MutableBlock(0)->Var("b")->SetType(proto::VarType::LOD_TENSOR);
prog.MutableBlock(0)->Var("c")->SetType(proto::VarType::LOD_TENSOR);
std::unique_ptr<ir::Graph> g(new ir::Graph(prog));
ir::Node *control_dep1 = nullptr;
ir::Node *control_dep2 = nullptr;
for (ir::Node *n : g->Nodes()) {
if (n->Name() == "sum") {
ASSERT_EQ(n->outputs[0]->Name(), "b");
ASSERT_TRUE(ir::IsControlDepVar(*n->outputs[1]));
control_dep1 = n->outputs[1];
ASSERT_EQ(n->outputs.size(), 2);
}
if (n->Name() == "dummy") {
ASSERT_EQ(n->inputs[0]->Name(), "c");
ASSERT_TRUE(ir::IsControlDepVar(*n->inputs[1]));
control_dep2 = n->inputs[1];
ASSERT_EQ(n->inputs.size(), 2);
}
}
ASSERT_EQ(control_dep1, control_dep2);
}
TEST(GraphTest, WriteAfterWrite) {
// void Test() {
ProgramDesc prog;
auto *op = prog.MutableBlock(0)->AppendOp();
op->SetType("sum");
op->SetInput("X", {"a"});
op->SetOutput("Out", {"b"});
op->SetAttr("op_role", 1);
op = prog.MutableBlock(0)->AppendOp();
op->SetType("dummy");
op->SetInput("X", {"c"});
op->SetOutput("Out", {"b"});
op->SetAttr("op_role", 1);
prog.MutableBlock(0)->Var("a")->SetType(proto::VarType::LOD_TENSOR);
prog.MutableBlock(0)->Var("b")->SetType(proto::VarType::LOD_TENSOR);
prog.MutableBlock(0)->Var("c")->SetType(proto::VarType::LOD_TENSOR);
std::unique_ptr<ir::Graph> g(new ir::Graph(prog));
ir::Node *control_dep1 = nullptr;
ir::Node *control_dep2 = nullptr;
for (ir::Node *n : g->Nodes()) {
if (n->Name() == "sum") {
ASSERT_EQ(n->outputs[0]->Name(), "b");
ASSERT_TRUE(ir::IsControlDepVar(*n->outputs[1]));
ASSERT_EQ(n->outputs.size(), 2);
control_dep1 = n->outputs[1];
}
if (n->Name() == "dummy") {
ASSERT_EQ(n->inputs[0]->Name(), "c");
ASSERT_TRUE(ir::IsControlDepVar(*n->inputs[1]));
control_dep2 = n->inputs[1];
ASSERT_EQ(n->inputs.size(), 2);
}
}
ASSERT_NE(control_dep1, nullptr);
ASSERT_NE(control_dep2, nullptr);
ASSERT_EQ(control_dep1, control_dep2);
}
7 years ago
} // namespace framework
} // namespace paddle