|
|
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
you may not use this file except in compliance with the License.
|
|
|
|
You may obtain a copy of the License at
|
|
|
|
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
See the License for the specific language governing permissions and
|
|
|
|
limitations under the License. */
|
|
|
|
|
|
|
|
#pragma once
|
|
|
|
|
|
|
|
#include <algorithm>
|
|
|
|
#include <atomic>
|
|
|
|
#include <string>
|
|
|
|
#include <tuple>
|
|
|
|
#include <unordered_map>
|
|
|
|
#include <vector>
|
|
|
|
|
|
|
|
#include "glog/logging.h" // For VLOG
|
|
|
|
#include "paddle/framework/attribute.h"
|
|
|
|
#include "paddle/framework/block_desc.h"
|
|
|
|
#include "paddle/framework/framework.pb.h"
|
|
|
|
#include "paddle/framework/lod_tensor.h"
|
|
|
|
#include "paddle/framework/op_info.h"
|
|
|
|
#include "paddle/framework/op_kernel_type.h"
|
|
|
|
#include "paddle/framework/scope.h"
|
|
|
|
#include "paddle/framework/selected_rows.h"
|
|
|
|
#include "paddle/framework/tensor.h"
|
|
|
|
#include "paddle/platform/device_context.h"
|
|
|
|
#include "paddle/platform/variant.h"
|
|
|
|
#include "paddle/utils/Error.h"
|
|
|
|
|
|
|
|
namespace paddle {
|
|
|
|
namespace framework {
|
|
|
|
|
|
|
|
/// If a variable is a empty variable, that name will be used.
|
|
|
|
constexpr char kEmptyVarName[] = "@EMPTY@";
|
|
|
|
|
|
|
|
/// If a variable is a temporary variable, that name will be set in Python,
|
|
|
|
/// but it will be convert to a unique name in scope after OpCreator.
|
|
|
|
constexpr char kTempVarName[] = "@TEMP@";
|
|
|
|
|
|
|
|
/// If a variable's name has a certain suffix, it means that the
|
|
|
|
/// variable is the gradient of another varibale.
|
|
|
|
/// e.g. Variable "x@GRAD" is the gradient of varibale "x".
|
|
|
|
constexpr char kGradVarSuffix[] = "@GRAD";
|
|
|
|
|
|
|
|
/// Variables with this suffix are supposed to be filled up with zeros.
|
|
|
|
constexpr char kZeroVarSuffix[] = "@ZERO";
|
|
|
|
|
|
|
|
// define some kernel priority
|
|
|
|
/* Define multiple kernel type fallback order*/
|
|
|
|
extern std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority;
|
|
|
|
|
|
|
|
inline std::string GradVarName(const std::string& var_name) {
|
|
|
|
return var_name + kGradVarSuffix;
|
|
|
|
}
|
|
|
|
|
|
|
|
class OperatorBase;
|
|
|
|
class ExecutionContext;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* OperatorBase has the basic element that Net will call to do computation.
|
|
|
|
* Only CreateOperator from OpRegistry will new Operator directly. User
|
|
|
|
* should always construct a proto message OpDesc and call
|
|
|
|
* OpRegistry::CreateOp(op_desc) to get an Operator instance.
|
|
|
|
*/
|
|
|
|
class OperatorBase {
|
|
|
|
public:
|
|
|
|
OperatorBase(const std::string& type, const VariableNameMap& inputs,
|
|
|
|
const VariableNameMap& outputs, const AttributeMap& attrs);
|
|
|
|
|
|
|
|
virtual ~OperatorBase() {}
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
inline const T& Attr(const std::string& name) const {
|
|
|
|
PADDLE_ENFORCE(attrs_.count(name) != 0, "%s should be in AttributeMap",
|
|
|
|
name);
|
|
|
|
return boost::get<T>(attrs_.at(name));
|
|
|
|
}
|
|
|
|
|
|
|
|
/// if scope is not null, also show dimensions of arguments
|
|
|
|
virtual std::string DebugStringEx(const Scope* scope) const;
|
|
|
|
|
|
|
|
std::string DebugString() const { return DebugStringEx(nullptr); }
|
|
|
|
|
|
|
|
/// Net will call this function to Run an op.
|
|
|
|
virtual void Run(const Scope& scope, const platform::Place& place) const = 0;
|
|
|
|
|
|
|
|
// FIXME(typhoonzero): this is only used for recv_op to stop event_loop.
|
|
|
|
virtual void Stop() {}
|
|
|
|
|
|
|
|
virtual bool IsNetOp() const { return false; }
|
|
|
|
|
|
|
|
virtual bool SupportGPU() const { return false; }
|
|
|
|
|
|
|
|
/// rename inputs outputs name
|
|
|
|
void Rename(const std::string& old_name, const std::string& new_name);
|
|
|
|
|
|
|
|
const VariableNameMap& Inputs() const { return inputs_; }
|
|
|
|
const VariableNameMap& Outputs() const { return outputs_; }
|
|
|
|
|
|
|
|
//! Get a input with argument's name described in `op_proto`
|
|
|
|
std::string Input(const std::string& name) const;
|
|
|
|
//! Get a input which has multiple variables.
|
|
|
|
const std::vector<std::string>& Inputs(const std::string& name) const;
|
|
|
|
|
|
|
|
std::vector<std::string> InputVars() const;
|
|
|
|
|
|
|
|
//! Get a output with argument's name described in `op_proto`
|
|
|
|
std::string Output(const std::string& name) const;
|
|
|
|
//! Get an output which has multiple variables.
|
|
|
|
//! TODO add a vector_view to prevent memory copy.
|
|
|
|
const std::vector<std::string>& Outputs(const std::string& name) const;
|
|
|
|
|
|
|
|
virtual std::vector<std::string> OutputVars(bool has_intermediate) const;
|
|
|
|
|
|
|
|
const std::string& Type() const { return type_; }
|
|
|
|
void SetType(const std::string& type) { type_ = type; }
|
|
|
|
const AttributeMap& Attrs() const { return attrs_; }
|
|
|
|
|
|
|
|
// Return a new operator instance, which is as same as this.
|
|
|
|
// Use unique_ptr to prevent caller forget to delete this pointer.
|
|
|
|
virtual std::unique_ptr<OperatorBase> Clone() const = 0;
|
|
|
|
|
|
|
|
protected:
|
|
|
|
std::string type_;
|
|
|
|
// NOTE: in case of OpGrad, inputs_ contains:
|
|
|
|
// I (Inputs)
|
|
|
|
// O (Outputs)
|
|
|
|
// OG (Output Gradients)
|
|
|
|
VariableNameMap inputs_;
|
|
|
|
|
|
|
|
// NOTE: in case of OpGrad, outputs_ contains
|
|
|
|
// IG (Inputs Gradients)
|
|
|
|
VariableNameMap outputs_;
|
|
|
|
AttributeMap attrs_;
|
|
|
|
|
|
|
|
private:
|
|
|
|
void GenerateTemporaryNames();
|
|
|
|
void CheckAllInputOutputSet() const;
|
|
|
|
};
|
|
|
|
|
|
|
|
// Macro for define a clone method.
|
|
|
|
// If you are writing an kernel operator, `Clone` will be defined when you
|
|
|
|
// register it. i.e. `Clone` method is not needed to define by yourself.
|
|
|
|
#define DEFINE_OP_CLONE_METHOD(cls) \
|
|
|
|
std::unique_ptr<::paddle::framework::OperatorBase> Clone() const final { \
|
|
|
|
return std::unique_ptr<::paddle::framework::OperatorBase>(new cls(*this)); \
|
|
|
|
}
|
|
|
|
|
|
|
|
// Macro for define a default constructor for Operator.
|
|
|
|
// You can also use
|
|
|
|
// using PARENT_CLASS::PARENT_CLASS;
|
|
|
|
// to use parent's constructor.
|
|
|
|
#define DEFINE_OP_CONSTRUCTOR(cls, parent_cls) \
|
|
|
|
cls(const std::string& type, \
|
|
|
|
const ::paddle::framework::VariableNameMap& inputs, \
|
|
|
|
const ::paddle::framework::VariableNameMap& outputs, \
|
|
|
|
const paddle::framework::AttributeMap& attrs) \
|
|
|
|
: parent_cls(type, inputs, outputs, attrs) {}
|
|
|
|
|
|
|
|
class NOP : public OperatorBase {
|
|
|
|
public:
|
|
|
|
using OperatorBase::OperatorBase;
|
|
|
|
void Run(const Scope& scope, const platform::Place& place) const override {}
|
|
|
|
std::unique_ptr<OperatorBase> Clone() const override {
|
|
|
|
return std::unique_ptr<OperatorBase>(new NOP(*this));
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
class ExecutionContext {
|
|
|
|
public:
|
|
|
|
ExecutionContext(const OperatorBase& op, const Scope& scope,
|
|
|
|
const platform::DeviceContext& device_context)
|
|
|
|
: op_(op), scope_(scope), device_context_(device_context) {}
|
|
|
|
|
|
|
|
const OperatorBase& op() const { return op_; }
|
|
|
|
|
|
|
|
const Scope& scope() const { return scope_; }
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
inline const T& Attr(const std::string& name) const {
|
|
|
|
return op_.Attr<T>(name);
|
|
|
|
}
|
|
|
|
|
|
|
|
size_t InputSize(const std::string& name) const {
|
|
|
|
return op_.Inputs(name).size();
|
|
|
|
}
|
|
|
|
|
|
|
|
size_t OutputSize(const std::string& name) const {
|
|
|
|
return op_.Outputs(name).size();
|
|
|
|
}
|
|
|
|
|
|
|
|
const Variable* InputVar(const std::string& name) const {
|
|
|
|
auto ipt = op_.Input(name);
|
|
|
|
return ipt == kEmptyVarName ? nullptr : scope_.FindVar(ipt);
|
|
|
|
}
|
|
|
|
|
|
|
|
Variable* OutputVar(const std::string& name) const {
|
|
|
|
auto opt = op_.Output(name);
|
|
|
|
return opt == kEmptyVarName ? nullptr : scope_.FindVar(opt);
|
|
|
|
}
|
|
|
|
|
|
|
|
const std::vector<const Variable*> MultiInputVar(
|
|
|
|
const std::string& name) const {
|
|
|
|
auto names = op_.Inputs(name);
|
|
|
|
std::vector<const Variable*> res;
|
|
|
|
res.reserve(names.size());
|
|
|
|
std::transform(names.begin(), names.end(), std::back_inserter(res),
|
|
|
|
[this](const std::string& name) {
|
|
|
|
return name == kEmptyVarName ? nullptr
|
|
|
|
: scope_.FindVar(name);
|
|
|
|
});
|
|
|
|
return res;
|
|
|
|
}
|
|
|
|
|
|
|
|
std::vector<Variable*> MultiOutputVar(const std::string& name) const {
|
|
|
|
auto names = op_.Outputs(name);
|
|
|
|
std::vector<Variable*> res;
|
|
|
|
res.reserve(names.size());
|
|
|
|
std::transform(names.begin(), names.end(), std::back_inserter(res),
|
|
|
|
[this](const std::string& name) {
|
|
|
|
return name == kEmptyVarName ? nullptr
|
|
|
|
: scope_.FindVar(name);
|
|
|
|
});
|
|
|
|
return res;
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
const T* Input(const std::string& name) const {
|
|
|
|
auto* var = InputVar(name);
|
|
|
|
return var == nullptr ? nullptr : &var->Get<T>();
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
T* Output(const std::string& name) const {
|
|
|
|
auto var = OutputVar(name);
|
|
|
|
return var == nullptr ? nullptr : var->GetMutable<T>();
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
const std::vector<const T*> MultiInput(const std::string& name) const {
|
|
|
|
auto names = op_.Inputs(name);
|
|
|
|
std::vector<const T*> res;
|
|
|
|
res.reserve(names.size());
|
|
|
|
std::transform(names.begin(), names.end(), std::back_inserter(res),
|
|
|
|
[&](const std::string& sub_name) {
|
|
|
|
auto var = scope_.FindVar(sub_name);
|
|
|
|
return var == nullptr ? nullptr : &var->Get<T>();
|
|
|
|
});
|
|
|
|
return res;
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
std::vector<T*> MultiOutput(const std::string& name) const {
|
|
|
|
auto names = op_.Outputs(name);
|
|
|
|
std::vector<T*> res;
|
|
|
|
res.reserve(names.size());
|
|
|
|
std::transform(names.begin(), names.end(), std::back_inserter(res),
|
|
|
|
[&](const std::string& sub_name) {
|
|
|
|
auto var = scope_.FindVar(sub_name);
|
|
|
|
return var == nullptr ? nullptr : var->GetMutable<T>();
|
|
|
|
});
|
|
|
|
return res;
|
|
|
|
}
|
|
|
|
|
|
|
|
void ShareLoD(const std::string& in, const std::string& out, size_t i = 0,
|
|
|
|
size_t j = 0) const {
|
|
|
|
PADDLE_ENFORCE_LT(i, InputSize(in));
|
|
|
|
PADDLE_ENFORCE_LT(j, OutputSize(out));
|
|
|
|
auto* in_var = MultiInputVar(in)[i];
|
|
|
|
auto* out_var = MultiOutputVar(out)[j];
|
|
|
|
if (!in_var->IsType<LoDTensor>()) return;
|
|
|
|
PADDLE_ENFORCE(out_var->IsType<LoDTensor>(),
|
|
|
|
"The %d-th output of Output(%s) must be LoDTensor.", j, out);
|
|
|
|
auto in_tensor = in_var->Get<LoDTensor>();
|
|
|
|
auto* out_tensor = out_var->GetMutable<LoDTensor>();
|
|
|
|
out_tensor->set_lod(in_tensor.lod());
|
|
|
|
}
|
|
|
|
|
|
|
|
platform::Place GetPlace() const { return device_context_.GetPlace(); }
|
|
|
|
|
|
|
|
template <typename DeviceContextType>
|
|
|
|
const DeviceContextType& device_context() const {
|
|
|
|
return *reinterpret_cast<const DeviceContextType*>(&device_context_);
|
|
|
|
}
|
|
|
|
|
|
|
|
const platform::DeviceContext& device_context() const {
|
|
|
|
return device_context_;
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef PADDLE_WITH_CUDA
|
|
|
|
const inline platform::CUDADeviceContext& cuda_device_context() const {
|
|
|
|
PADDLE_ENFORCE(platform::is_gpu_place(device_context_.GetPlace()));
|
|
|
|
return *reinterpret_cast<const platform::CUDADeviceContext*>(
|
|
|
|
&device_context_);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
//! Get actual name vector for this input.
|
|
|
|
const std::vector<std::string>& Inputs(const std::string& name) const {
|
|
|
|
return op_.Inputs(name);
|
|
|
|
}
|
|
|
|
|
|
|
|
//! Get actual name vector for this output.
|
|
|
|
const std::vector<std::string>& Outputs(const std::string& name) const {
|
|
|
|
return op_.Outputs(name);
|
|
|
|
}
|
|
|
|
|
|
|
|
private:
|
|
|
|
const OperatorBase& op_;
|
|
|
|
const Scope& scope_;
|
|
|
|
const platform::DeviceContext& device_context_;
|
|
|
|
};
|
|
|
|
|
|
|
|
template <>
|
|
|
|
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const;
|
|
|
|
|
|
|
|
template <>
|
|
|
|
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
|
|
|
|
const std::string& name) const;
|
|
|
|
|
|
|
|
template <>
|
|
|
|
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const;
|
|
|
|
|
|
|
|
template <>
|
|
|
|
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
|
|
|
|
const std::string& name) const;
|
|
|
|
|
|
|
|
class OpKernelBase {
|
|
|
|
public:
|
|
|
|
/**
|
|
|
|
* ExecutionContext is the only parameter of Kernel Run function.
|
|
|
|
* Run will get input/output variables, state such as momentum and
|
|
|
|
* device resource such as CUDA stream, cublas handle, etc. from
|
|
|
|
* ExecutionContext. User should construct it before run the Operator.
|
|
|
|
*/
|
|
|
|
|
|
|
|
virtual void Compute(const ExecutionContext& context) const = 0;
|
|
|
|
|
|
|
|
virtual ~OpKernelBase() = default;
|
|
|
|
};
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
class OpKernel : public OpKernelBase {
|
|
|
|
public:
|
|
|
|
using ELEMENT_TYPE = T;
|
|
|
|
};
|
|
|
|
|
|
|
|
class OperatorWithKernel : public OperatorBase {
|
|
|
|
public:
|
|
|
|
using OpKernelMap =
|
|
|
|
std::unordered_map<OpKernelType, std::unique_ptr<OpKernelBase>,
|
|
|
|
OpKernelType::Hash>;
|
|
|
|
|
|
|
|
OperatorWithKernel(const std::string& type, const VariableNameMap& inputs,
|
|
|
|
const VariableNameMap& outputs, const AttributeMap& attrs)
|
|
|
|
: OperatorBase(type, inputs, outputs, attrs) {}
|
|
|
|
|
|
|
|
void Run(const Scope& scope, const platform::Place& place) const final;
|
|
|
|
|
|
|
|
static std::unordered_map<std::string /* op_type */, OpKernelMap>&
|
|
|
|
AllOpKernels() {
|
|
|
|
static std::unordered_map<std::string, OpKernelMap> g_all_op_kernels;
|
|
|
|
return g_all_op_kernels;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool SupportGPU() const override {
|
|
|
|
auto& op_kernels = OperatorWithKernel::AllOpKernels().at(type_);
|
|
|
|
return std::any_of(op_kernels.begin(), op_kernels.end(),
|
|
|
|
[](OpKernelMap::const_reference kern_pair) {
|
|
|
|
return platform::is_gpu_place(kern_pair.first.place_);
|
|
|
|
});
|
|
|
|
}
|
|
|
|
|
|
|
|
virtual void InferShape(InferShapeContext* ctx) const {
|
|
|
|
OpInfoMap::Instance().Get(Type()).infer_shape_(ctx);
|
|
|
|
}
|
|
|
|
|
|
|
|
protected:
|
|
|
|
virtual OpKernelType GetExpectedKernelType(const ExecutionContext& ctx) const;
|
|
|
|
virtual OpKernelType GetKernelTypeForVar(
|
|
|
|
const std::string& var_name, const Tensor& tensor,
|
|
|
|
const OpKernelType& expected_kernel_type) const;
|
|
|
|
|
|
|
|
private:
|
|
|
|
// indicate kernel DataType by input data. Defaultly all input data must be
|
|
|
|
// same.
|
|
|
|
proto::DataType IndicateDataType(const ExecutionContext& ctx) const;
|
|
|
|
};
|
|
|
|
|
|
|
|
extern bool OpSupportGPU(const std::string& op_type);
|
|
|
|
|
|
|
|
} // namespace framework
|
|
|
|
} // namespace paddle
|