You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/framework/backward.cc

273 lines
10 KiB

8 years ago
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/framework/backward.h"
#include "paddle/operators/net_op.h"
8 years ago
#include <list>
#include <memory>
#include "paddle/framework/op_registry.h"
#include "paddle/operators/net_op.h"
#include "paddle/operators/recurrent_op.h"
8 years ago
namespace paddle {
namespace framework {
static inline std::unique_ptr<OperatorBase> CreateGradOp(
const OperatorBase& op) {
OpDescBind op_desc;
op_desc.SetInputMap(op.Inputs());
op_desc.SetOutputMap(op.Outputs());
op_desc.SetType(op.Type());
op_desc.SetAttrMap(op.Attrs());
auto& info = OpInfoMap::Instance().Get(op.Type());
auto grad_descs = info.grad_op_maker_(op_desc);
std::vector<std::unique_ptr<OperatorBase>> grad_ops;
grad_ops.reserve(grad_descs.size());
std::transform(
grad_descs.begin(), grad_descs.end(), std::back_inserter(grad_ops),
[](OpDescBind& grad_desc) { return OpRegistry::CreateOp(&grad_desc); });
PADDLE_ENFORCE_GT(grad_ops.size(), 0);
if (grad_ops.size() == 1) {
return std::move(grad_ops[0]);
} else {
auto net_op = new operators::NetOp();
for (auto& grad_op : grad_ops) {
net_op->AppendOp(std::move(grad_op));
}
return std::unique_ptr<OperatorBase>(net_op);
}
}
template <typename Map, typename T>
8 years ago
static void ForEachVarName(const Map& names, T callback) {
8 years ago
for (auto& name : names) {
for (auto& n : name.second) {
if (callback(n)) return;
8 years ago
}
}
}
// return whether all the names + suffixes in the set
static bool AllInSet(
8 years ago
const std::map<std::string, std::vector<std::string>>& names,
const std::string& suffix, const std::unordered_set<std::string>& set) {
bool all_in_set = true;
ForEachVarName(names, [&all_in_set, &set, &suffix](const std::string& n) {
all_in_set = set.find(n + suffix) != set.end();
return !all_in_set;
});
return all_in_set;
8 years ago
}
static std::unique_ptr<OperatorBase> NOP() {
auto net_op = new operators::NetOp();
8 years ago
net_op->SetType("@NOP@");
8 years ago
net_op->CompleteAddOp();
return std::unique_ptr<OperatorBase>(net_op);
8 years ago
}
// Get backward operator from a forward operator, a recursive implementation.
//
// no_grad_names the gradient variable names without gradient calculating.
//
// uniq_id is a unique index used inside recursively calling
// BackwardRecursive. use `uid = uniq_id++;` to get the unique index, and
// pass `uniq_id` through recursive calling.
//
// returns The backward operator. In a simple situation, it may be a simple
// operator, in a complex situation, it maybe a NetOp.
//
// See Backward.h for details
static std::unique_ptr<OperatorBase> BackwardRecursive(
const OperatorBase& forwardOp,
std::unordered_set<std::string>& no_grad_names, size_t& uniq_id) {
// If all input gradients of forwarding operator do not need to calculate,
// just return an NOP. Not return null ptr because NOP does not take
8 years ago
// too much time for calculation, but it is useful for simplifying logic.
if (AllInSet(forwardOp.Inputs() /*names*/, kGradVarSuffix /*suffix*/,
no_grad_names /*set*/)) {
return NOP();
8 years ago
}
// All output gradients of forwarding operator do not need to calculate.
// Then all input gradients cannot be computed at all, and we put them into
// `no_grad_names` set. Return an NOP.
8 years ago
if (AllInSet(forwardOp.Outputs() /*names*/, kGradVarSuffix /*suffix*/,
no_grad_names /*set*/)) {
8 years ago
ForEachVarName(forwardOp.Inputs(),
[&no_grad_names](const std::string& name) -> bool {
no_grad_names.insert(GradVarName(name));
return false;
});
return NOP();
8 years ago
}
// Returned gradient network
auto net = std::unique_ptr<operators::NetOp>(new operators::NetOp());
8 years ago
if (forwardOp.IsNetOp()) {
// Because forwardOp is a net op, it can static_cast.
auto& forwardNet = static_cast<const operators::NetOp&>(forwardOp);
// Map from output gradient variable name to operator's indices in
// backward net's ops_. That operator generates that variable.
std::unordered_map<std::string, std::vector<size_t>> dup_output_ops;
size_t local_op_id = 0;
// reversely travel forwardNet and collect all duplicate outputs.
for (auto it = forwardNet.ops_.rbegin(); it != forwardNet.ops_.rend();
++it, ++local_op_id) {
auto& fwd = *it;
auto bwd = BackwardRecursive(*fwd, no_grad_names, uniq_id);
8 years ago
ForEachVarName(bwd->Outputs(),
[&dup_output_ops, local_op_id](const std::string& out) {
dup_output_ops[out].emplace_back(local_op_id);
return false;
});
net->AppendOp(std::move(bwd));
}
// Get unique ID for this method.
auto uid = uniq_id++;
8 years ago
// TODO(dzh): more comment
// multiple operators which have the same output (y for example) may
// overwrite the same y variable when backward, special operations are token
// to handle this case. For each duplicate output, rename it to an alias
// (original name with a offset), append an `add` op for its operator,
// and finally sum all the alias variable to the final output variable y.
using Pos = std::pair<size_t, std::unique_ptr<OperatorBase>>;
std::list<Pos> insert_position;
for (auto& dup_output_op : dup_output_ops) {
8 years ago
const std::string& name = dup_output_op.first;
8 years ago
// duplicate @Empty@ don't need to be added
if (name == kEmptyVarName) continue;
auto& dup_op = dup_output_op.second;
// no duplicate output
if (dup_op.size() == 1) continue;
// process the duplicate outputs
std::vector<std::string> dup_outputs;
for (size_t i = 0; i < dup_op.size(); ++i) {
// rename each duplicate output to an alias
auto op_offset = dup_op[i];
8 years ago
dup_outputs.push_back(name + "@RENAME@" + std::to_string(uid) + "@" +
std::to_string(i));
net->ops_[op_offset]->Rename(name, dup_outputs.back());
}
// collect all the offset to append `add` op for each alias
//
// one variable is shared between multiple operators.
// insert add operator one by one, then add it to output
7 years ago
for (size_t output_idx = 0; output_idx < dup_outputs.size() - 1;
++output_idx) {
auto insert_add_x = dup_outputs[output_idx];
auto insert_add_y = dup_outputs[output_idx];
auto insert_add_out = name + "@SHARED@" + std::to_string(output_idx);
// first add op inserted
if (output_idx == dup_outputs.size() - 2) {
insert_add_out = name;
}
if (output_idx != 0) {
insert_add_y = name + "@SHARED@" + std::to_string(output_idx - 1);
}
insert_position.push_back(
{dup_op.back(),
OpRegistry::CreateOp(
"sum", {{"X", {insert_add_x}}, {"X", {insert_add_y}}},
7 years ago
{{"Out", {insert_add_out}}}, {})});
}
8 years ago
}
// make sure the inserted `add` ops follow the BFS order.
insert_position.sort(
8 years ago
[](const Pos& l, const Pos& r) { return l.first > r.first; });
for (auto& pos : insert_position) {
net->InsertOp(pos.first + 1, std::move(pos.second));
}
8 years ago
} else {
std::unique_ptr<OperatorBase> grad_op(CreateGradOp(forwardOp));
PADDLE_ENFORCE(grad_op != nullptr);
ForEachVarName(grad_op->Inputs(), [&no_grad_names, &net, &grad_op](
const std::string& grad_input) {
if (no_grad_names.count(grad_input)) {
// +1 for \0
std::string prefix = grad_input.substr(
0, grad_input.size() - sizeof(kGradVarSuffix) / sizeof(char) + 1);
8 years ago
grad_op->Rename(grad_input, prefix + kZeroVarSuffix);
// If part of input gradient of that operator is not calculated, fill
// zero variables to that input gradient.
net->AppendOp(OpRegistry::CreateOp("fill_zeros_like", {{"X", {prefix}}},
{{"Y", {grad_input}}}, {}));
}
return false;
});
8 years ago
ForEachVarName(grad_op->Outputs(),
[&no_grad_names, &grad_op](const std::string& grad_output) {
if (no_grad_names.count(grad_output)) {
8 years ago
grad_op->Rename(grad_output, kEmptyVarName);
}
return false;
});
// process recurrent gradient op as a special operator.
if (forwardOp.Type() == "recurrent") {
// NOTE clean up cycle call somewhere (RNN's stepnet constains itself), or
// this will result in infinite loop.
const auto& rnnop =
*static_cast<const operators::RecurrentOp*>(&forwardOp);
auto rnn_grad_op =
static_cast<operators::RecurrentGradientOp*>(grad_op.get());
const auto& stepnet_op =
*static_cast<const OperatorBase*>(&rnnop.stepnet());
// create stepnet's gradient op
rnn_grad_op->set_stepnet(
BackwardRecursive(stepnet_op, no_grad_names, uniq_id));
}
if (net->ops_.empty()) { // Current no aux op is added to network
return grad_op;
}
net->AppendOp(std::move(grad_op));
8 years ago
}
8 years ago
net->SetType("@GENERATED_BACKWARD@");
8 years ago
net->CompleteAddOp();
return std::unique_ptr<OperatorBase>(
static_cast<OperatorBase*>(net.release()));
}
8 years ago
// See header for comments
std::unique_ptr<OperatorBase> Backward(
8 years ago
const OperatorBase& forwardOp,
8 years ago
const std::unordered_set<std::string>& no_grad_vars) {
std::unordered_set<std::string> no_grad_names;
8 years ago
no_grad_names.reserve(no_grad_vars.size() + 1);
8 years ago
no_grad_names.insert(std::string(kEmptyVarName) + kGradVarSuffix);
8 years ago
for (auto& name : no_grad_vars) {
no_grad_names.insert(name + kGradVarSuffix);
8 years ago
}
size_t uid = 0;
return BackwardRecursive(forwardOp, no_grad_names, uid);
8 years ago
}
8 years ago
8 years ago
} // namespace framework
} // namespace paddle