You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
120 lines
4.1 KiB
120 lines
4.1 KiB
5 years ago
|
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||
|
//
|
||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
// you may not use this file except in compliance with the License.
|
||
|
// You may obtain a copy of the License at
|
||
|
//
|
||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||
|
//
|
||
|
// Unless required by applicable law or agreed to in writing, software
|
||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
// See the License for the specific language governing permissions and
|
||
|
// limitations under the License.
|
||
|
|
||
|
#include "paddle/fluid/operators/dist_op.h"
|
||
|
#include <string>
|
||
|
#include <vector>
|
||
|
#include "paddle/fluid/framework/op_registry.h"
|
||
|
namespace paddle {
|
||
|
namespace operators {
|
||
|
|
||
|
class DistOp : public framework::OperatorWithKernel {
|
||
|
public:
|
||
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
||
|
|
||
|
void InferShape(framework::InferShapeContext *ctx) const override {
|
||
|
OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "Dist");
|
||
|
OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "Dist");
|
||
|
OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "Dist");
|
||
|
ctx->SetOutputDim("Out", {1});
|
||
|
}
|
||
|
};
|
||
|
|
||
|
class DistOpMaker : public framework::OpProtoAndCheckerMaker {
|
||
|
public:
|
||
|
void Make() override {
|
||
|
AddInput("X", "The input Tensor of Dist Op.");
|
||
|
AddInput("Y", "The Right-hand-side input Tensor of Dist Op.");
|
||
|
AddOutput("Out",
|
||
|
"The output of Dist Op, "
|
||
|
"which is the p-norm of (X - Y)");
|
||
|
AddAttr<float>("p", "the norm to be computed.").SetDefault(2.0f);
|
||
|
AddComment(R"DOC(
|
||
|
Dist Operator.
|
||
|
Given two tensors X and Y, compute Lp-norm of (X-Y). It is not a norm in a strict sense,
|
||
|
only as a measure of distance. The shapes of X and Y must be broadcastable. Where, Z = X - Y,
|
||
|
|
||
|
When p = 0, defining $0^0 = 0$, the zero-norm of Z is simply the number of non-zero elements of z.
|
||
|
$$
|
||
|
||Z||_{0} = \lim_{p \rightarrow 0} \sum_{i=1}^{m} |z_i|^p
|
||
|
$$
|
||
|
|
||
|
When p = inf, the inf-norm of Z is the maximum element of Z.
|
||
|
$$
|
||
|
||Z||_\infty=\max_i |z_i|
|
||
|
$$
|
||
|
|
||
|
When p = -inf, the negative-inf-norm of Z is the minimum element of Z.
|
||
|
$$
|
||
|
||Z||_{-\infty}=\min_i |z_i|
|
||
|
$$
|
||
|
|
||
|
Otherwise, the p-norm of Z follows the formula,
|
||
|
$$
|
||
|
||Z||_{p} = (\sum_{i=i}^{m} |z_i|^p)^{1/p}
|
||
|
$$
|
||
|
)DOC");
|
||
|
}
|
||
|
};
|
||
|
|
||
|
class DistOpGrad : public framework::OperatorWithKernel {
|
||
|
public:
|
||
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
||
|
|
||
|
void InferShape(framework::InferShapeContext *ctx) const override {
|
||
|
auto x_dims = ctx->GetInputDim("X");
|
||
|
auto y_dims = ctx->GetInputDim("Y");
|
||
|
if (ctx->HasOutput(framework::GradVarName("X"))) {
|
||
|
ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
|
||
|
}
|
||
|
if (ctx->HasOutput(framework::GradVarName("Y"))) {
|
||
|
ctx->SetOutputDim(framework::GradVarName("Y"), y_dims);
|
||
|
}
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template <typename T>
|
||
|
class DistGradOpMaker : public framework::SingleGradOpMaker<T> {
|
||
|
public:
|
||
|
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
|
||
|
|
||
|
protected:
|
||
|
void Apply(GradOpPtr<T> op) const override {
|
||
|
op->SetType(this->ForwardOpType() + "_grad");
|
||
|
op->SetInput("X", this->Input("X"));
|
||
|
op->SetInput("Y", this->Input("Y"));
|
||
|
op->SetInput("Out", this->Output("Out"));
|
||
|
op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
|
||
|
|
||
|
op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
|
||
|
op->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y"));
|
||
|
op->SetAttrMap(this->Attrs());
|
||
|
}
|
||
|
};
|
||
|
|
||
|
} // namespace operators
|
||
|
} // namespace paddle
|
||
|
|
||
|
namespace ops = paddle::operators;
|
||
|
REGISTER_OPERATOR(dist, ops::DistOp, ops::DistOpMaker,
|
||
|
ops::DistGradOpMaker<paddle::framework::OpDesc>,
|
||
|
ops::DistGradOpMaker<paddle::imperative::OpBase>);
|
||
|
REGISTER_OPERATOR(dist_grad, ops::DistOpGrad);
|
||
|
REGISTER_OP_CPU_KERNEL(
|
||
|
dist, ops::DistKernel<paddle::platform::CPUDeviceContext, float>,
|
||
|
ops::DistKernel<paddle::platform::CPUDeviceContext, double>);
|
||
|
REGISTER_OP_CPU_KERNEL(
|
||
|
dist_grad, ops::DistGradKernel<paddle::platform::CPUDeviceContext, float>,
|
||
|
ops::DistGradKernel<paddle::platform::CPUDeviceContext, double>)
|