You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/operators/scatter.cu.h

196 lines
7.1 KiB

/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <unordered_set>
#include <vector>
#include "math/math_function.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/memory/malloc.h"
#include "paddle/fluid/platform/cuda_primitives.h"
#include "paddle/fluid/platform/place.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
template <typename T, typename IndexT = int>
__global__ void ScatterInitCUDAKernel(const IndexT* indices, T* output,
size_t index_size, size_t slice_size,
bool overwrite) {
CUDA_KERNEL_LOOP(i, index_size * slice_size) {
int indices_i = i / slice_size;
int slice_i = i - indices_i * slice_size; // offset inside the slice
IndexT scatter_i = indices[indices_i];
IndexT out_i = scatter_i * slice_size + slice_i;
*(output + out_i) = static_cast<T>(0);
}
}
template <typename T, typename IndexT = int>
__global__ void ScatterCUDAKernel(const T* params, const IndexT* indices,
T* output, size_t index_size,
size_t slice_size, bool overwrite) {
CUDA_KERNEL_LOOP(i, index_size * slice_size) {
int indices_i = i / slice_size;
int slice_i = i - indices_i * slice_size; // offset inside the slice
IndexT scatter_i = indices[indices_i];
IndexT out_i = scatter_i * slice_size + slice_i;
if (overwrite) {
*(output + out_i) = *(params + i);
} else {
paddle::platform::CudaAtomicAdd(output + out_i, *(params + i));
}
}
}
template <typename T, typename IndexT = int>
__global__ void ScatterNdCUDAKernel(const T* update, const IndexT* indices,
T* output, const int* output_dims,
size_t remain_size, size_t slice_size,
size_t end_size) {
CUDA_KERNEL_LOOP(i, remain_size * slice_size) {
int indices_i = i / slice_size;
int slice_i = i - indices_i * slice_size; // offset inside the slice
IndexT gather_i = 0;
int64_t temp = slice_size;
for (int64_t j = end_size - 1; j >= 0; --j) {
IndexT index_value = indices[indices_i * end_size + j];
gather_i += (index_value * temp);
temp *= output_dims[j];
}
IndexT output_i = gather_i + slice_i;
paddle::platform::CudaAtomicAdd(output + output_i, *(update + i));
}
}
/**
* A thin wrapper on gpu tensor
* Return a new updated tensor from source tensor, scatter-assigned according to
* index
* input[src]: type-T source Tensor
* input[index]: type-IndexT index Tensor (1-D)
* return: output tensor
*/
template <typename T, typename IndexT = int>
void GPUScatterAssign(const framework::ExecutionContext& context,
const Tensor& src, const Tensor& index, Tensor* output,
bool overwrite = true) {
// check index of shape 1-D
const auto& ctx = context.device_context();
if (index.dims().size() == 2) {
PADDLE_ENFORCE_EQ(index.dims()[1], 1,
platform::errors::InvalidArgument(
"index.dims()[1] should be 1 when "
"index.dims().size() = 2 in scatter_op."
"But received value is [%d]",
index.dims()[1]));
} else {
PADDLE_ENFORCE_EQ(index.dims().size(), 1,
platform::errors::InvalidArgument(
"index.dims().size() should be 1 or 2 in scatter_op."
"But received value is [%d]",
index.dims().size()));
}
int index_size = index.dims()[0];
auto src_dims = src.dims();
framework::DDim output_dims(src_dims);
output_dims[0] = index_size;
// slice size
int slice_size = 1;
for (int i = 1; i < src_dims.size(); ++i) slice_size *= src_dims[i];
const T* p_src = src.data<T>();
const IndexT* p_index = index.data<IndexT>();
7 years ago
T* p_output = output->data<T>();
const size_t& slice_bytes = slice_size * sizeof(T);
7 years ago
// set block and grid num
7 years ago
int block = 512;
int n = slice_size * index_size;
int grid = (n + block - 1) / block;
// if not overwrite mode, init data
if (!overwrite) {
ScatterInitCUDAKernel<T, IndexT><<<
grid, block, 0,
reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream()>>>(
p_index, p_output, index_size, slice_size, overwrite);
}
ScatterCUDAKernel<T, IndexT><<<
grid, block, 0,
reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream()>>>(
p_src, p_index, p_output, index_size, slice_size, overwrite);
}
template <typename DeviceContext, typename T, typename IndexT = int>
void GPUScatterNdAdd(const framework::ExecutionContext& context,
const Tensor& update, const Tensor& index,
Tensor* output) {
auto index_dims = index.dims();
auto index_dims_size = index_dims.size();
auto output_dims = output->dims();
auto output_dims_size = output_dims.size();
const T* p_update = update.data<T>();
const IndexT* p_index = index.data<IndexT>();
T* p_output = output->data<T>();
// final dim
int64_t end_size = index_dims[index_dims_size - 1];
// remain dim
auto remain_ddim = framework::slice_ddim(index_dims, 0, index_dims_size - 1);
int64_t remain_numel = framework::product(remain_ddim);
// slice size
int64_t slice_size = 1;
for (int64_t i = end_size; i < output_dims_size; ++i) {
slice_size *= output_dims[i];
}
const size_t slice_bytes = slice_size * sizeof(T);
// put output_dims int CUDA
// gplace and cplace
const auto& ctx = context.template device_context<DeviceContext>();
const auto gplace = BOOST_GET_CONST(platform::CUDAPlace, ctx.GetPlace());
auto cplace = platform::CPUPlace();
std::vector<int> v_output_dims(output_dims_size);
for (int i = 0; i < output_dims_size; ++i) {
v_output_dims[i] = static_cast<int>(output_dims[i]);
}
auto& dev_ctx = context.cuda_device_context();
int bytes = output_dims_size * sizeof(int);
auto output_dims_ptr = memory::Alloc(dev_ctx, bytes);
int* g_output_dims = reinterpret_cast<int*>(output_dims_ptr->ptr());
memory::Copy(gplace, g_output_dims, cplace, v_output_dims.data(), bytes,
ctx.stream());
int block = 512;
int n = slice_size * remain_numel;
int grid = (n + block - 1) / block;
ScatterNdCUDAKernel<T, IndexT><<<
grid, block, 0,
reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream()>>>(
p_update, p_index, p_output, g_output_dims, remain_numel, slice_size,
end_size);
}
} // namespace operators
} // namespace paddle