You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_fuse_optimizer_pass.py

101 lines
4.0 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from simple_nets import simple_fc_net, fc_with_batchnorm, init_data
from parallel_executor_test_base import TestParallelExecutorBase
import paddle.fluid as fluid
import paddle.fluid.core as core
import unittest
import os
class TestFuseAdamOps(TestParallelExecutorBase):
@classmethod
def setUpClass(cls):
os.environ['CPU_NUM'] = str(4)
def _compare_fused_optimizer_ops(self,
model,
use_cuda,
optimizer=fluid.optimizer.Adam):
if use_cuda and not core.is_compiled_with_cuda():
return
img, label = init_data()
feed_dict = {"image": img, "label": label}
not_fuse_op_first_loss, not_fuse_op_last_loss = self.check_network_convergence(
model,
feed_dict=feed_dict,
use_cuda=use_cuda,
fuse_all_optimizer_ops=False,
memory_opt=False, # avoid the gradient's name changed in Python side.
optimizer=optimizer)
fuse_op_first_loss, fuse_op_last_loss = self.check_network_convergence(
model,
feed_dict=feed_dict,
use_cuda=use_cuda,
fuse_all_optimizer_ops=True,
memory_opt=False, # avoid the gradient's name changed in Python side.
optimizer=optimizer)
for loss in zip(not_fuse_op_first_loss, fuse_op_first_loss):
self.assertAlmostEquals(loss[0], loss[1], delta=1e-6)
for loss in zip(not_fuse_op_last_loss, fuse_op_last_loss):
self.assertAlmostEquals(loss[0], loss[1], delta=1e-6)
def test_simple_fc_with_fuse_op(self):
self._compare_fused_optimizer_ops(simple_fc_net, True)
self._compare_fused_optimizer_ops(simple_fc_net, False)
def test_batchnorm_fc_with_fuse_op(self):
self._compare_fused_optimizer_ops(fc_with_batchnorm, True)
self._compare_fused_optimizer_ops(fc_with_batchnorm, False)
class TestFuseSGDOps(TestFuseAdamOps):
def sgd_optimizer(self, learning_rate=1e-3):
return fluid.optimizer.SGD(learning_rate=learning_rate)
def test_simple_fc_with_fuse_op(self):
self._compare_fused_optimizer_ops(
simple_fc_net, True, optimizer=self.sgd_optimizer)
self._compare_fused_optimizer_ops(
simple_fc_net, False, optimizer=self.sgd_optimizer)
def test_batchnorm_fc_with_fuse_op(self):
self._compare_fused_optimizer_ops(
fc_with_batchnorm, True, optimizer=self.sgd_optimizer)
self._compare_fused_optimizer_ops(
fc_with_batchnorm, False, optimizer=self.sgd_optimizer)
class TestFuseMomentumOps(TestFuseAdamOps):
def momentum_optimizer(self, learning_rate=1e-3):
return fluid.optimizer.Momentum(
learning_rate=learning_rate, momentum=0.1)
def test_simple_fc_with_fuse_op(self):
self._compare_fused_optimizer_ops(
simple_fc_net, True, optimizer=self.momentum_optimizer)
self._compare_fused_optimizer_ops(
simple_fc_net, False, optimizer=self.momentum_optimizer)
def test_batchnorm_fc_with_fuse_op(self):
self._compare_fused_optimizer_ops(
fc_with_batchnorm, True, optimizer=self.momentum_optimizer)
self._compare_fused_optimizer_ops(
fc_with_batchnorm, False, optimizer=self.momentum_optimizer)
if __name__ == '__main__':
unittest.main()