You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/operators/pool_op.h

186 lines
7.0 KiB

/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <string>
#include <vector>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/pooling.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
class PoolOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override;
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override;
};
class PoolOpGrad : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override;
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override;
};
class Pool2dOpMaker : public framework::OpProtoAndCheckerMaker {
public:
Pool2dOpMaker(OpProto* proto, OpAttrChecker* op_checker);
};
class Pool3dOpMaker : public framework::OpProtoAndCheckerMaker {
public:
Pool3dOpMaker(OpProto* proto, OpAttrChecker* op_checker);
};
template <typename DeviceContext, typename T>
7 years ago
class PoolKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
const Tensor* in_x = context.Input<Tensor>("X");
Tensor* out = context.Output<Tensor>("Out");
7 years ago
std::string pooling_type = context.Attr<std::string>("pooling_type");
std::vector<int> ksize = context.Attr<std::vector<int>>("ksize");
std::vector<int> strides = context.Attr<std::vector<int>>("strides");
std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
7 years ago
if (context.Attr<bool>("global_pooling")) {
for (size_t i = 0; i < ksize.size(); ++i) {
7 years ago
paddings[i] = 0;
ksize[i] = static_cast<int>(in_x->dims()[i + 2]);
}
}
auto& dev_ctx = context.template device_context<DeviceContext>();
switch (ksize.size()) {
case 2: {
if (pooling_type == "max") {
paddle::operators::math::Pool2dFunctor<
DeviceContext, paddle::operators::math::MaxPool<T>, T>
pool2d_forward;
paddle::operators::math::MaxPool<T> pool_process;
pool2d_forward(dev_ctx, *in_x, ksize, strides, paddings, pool_process,
out);
} else if (pooling_type == "avg") {
paddle::operators::math::Pool2dFunctor<
DeviceContext, paddle::operators::math::AvgPool<T>, T>
pool2d_forward;
paddle::operators::math::AvgPool<T> pool_process;
pool2d_forward(dev_ctx, *in_x, ksize, strides, paddings, pool_process,
out);
}
} break;
case 3: {
if (pooling_type == "max") {
paddle::operators::math::Pool3dFunctor<
DeviceContext, paddle::operators::math::MaxPool<T>, T>
pool3d_forward;
paddle::operators::math::MaxPool<T> pool_process;
pool3d_forward(dev_ctx, *in_x, ksize, strides, paddings, pool_process,
out);
} else if (pooling_type == "avg") {
paddle::operators::math::Pool3dFunctor<
DeviceContext, paddle::operators::math::AvgPool<T>, T>
pool3d_forward;
paddle::operators::math::AvgPool<T> pool_process;
pool3d_forward(dev_ctx, *in_x, ksize, strides, paddings, pool_process,
out);
}
} break;
7 years ago
default: { PADDLE_THROW("Pool op only supports 2D and 3D input."); }
}
}
};
template <typename DeviceContext, typename T>
7 years ago
class PoolGradKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
const Tensor* in_x = context.Input<Tensor>("X");
const Tensor* out = context.Input<Tensor>("Out");
const Tensor* out_grad =
context.Input<Tensor>(framework::GradVarName("Out"));
Tensor* in_x_grad = context.Output<Tensor>(framework::GradVarName("X"));
7 years ago
std::string pooling_type = context.Attr<std::string>("pooling_type");
std::vector<int> ksize = context.Attr<std::vector<int>>("ksize");
std::vector<int> strides = context.Attr<std::vector<int>>("strides");
std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
7 years ago
if (context.Attr<bool>("global_pooling")) {
7 years ago
for (size_t i = 0; i < ksize.size(); ++i) {
paddings[i] = 0;
ksize[i] = static_cast<int>(in_x->dims()[i + 2]);
7 years ago
}
}
auto& dev_ctx = context.template device_context<DeviceContext>();
if (in_x_grad) {
in_x_grad->mutable_data<T>(context.GetPlace());
paddle::operators::math::SetConstant<DeviceContext, T> set_constant;
set_constant(dev_ctx, in_x_grad, 0.0);
switch (ksize.size()) {
case 2: {
if (pooling_type == "max") {
paddle::operators::math::MaxPool2dGradFunctor<DeviceContext, T>
pool2d_backward;
pool2d_backward(dev_ctx, *in_x, *out, *out_grad, ksize, strides,
paddings, in_x_grad);
} else if (pooling_type == "avg") {
paddle::operators::math::Pool2dGradFunctor<
DeviceContext, paddle::operators::math::AvgPoolGrad<T>, T>
pool2d_backward;
paddle::operators::math::AvgPoolGrad<T> pool_process;
pool2d_backward(dev_ctx, *in_x, *out, *out_grad, ksize, strides,
paddings, pool_process, in_x_grad);
}
} break;
case 3: {
if (pooling_type == "max") {
paddle::operators::math::MaxPool3dGradFunctor<DeviceContext, T>
pool3d_backward;
pool3d_backward(dev_ctx, *in_x, *out, *out_grad, ksize, strides,
paddings, in_x_grad);
} else if (pooling_type == "avg") {
paddle::operators::math::Pool3dGradFunctor<
DeviceContext, paddle::operators::math::AvgPoolGrad<T>, T>
pool3d_backward;
paddle::operators::math::AvgPoolGrad<T> pool_process;
pool3d_backward(dev_ctx, *in_x, *out, *out_grad, ksize, strides,
paddings, pool_process, in_x_grad);
}
} break;
7 years ago
default: { PADDLE_THROW("Pool op only supports 2D and 3D input."); }
}
}
}
};
} // namespace operators
} // namespace paddle