You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/operators/conv2d_transpose_op.cc

112 lines
4.6 KiB

7 years ago
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
7 years ago
#include "paddle/operators/conv2d_transpose_op.h"
7 years ago
namespace paddle {
namespace operators {
7 years ago
void Conv2DTransposeOp::InferShape(framework::InferShapeContext* ctx) const {
7 years ago
PADDLE_ENFORCE(ctx->HasInput("Input"),
7 years ago
"Input(Input) of Conv2DTransposeOp should not be null.");
7 years ago
PADDLE_ENFORCE(ctx->HasInput("Filter"),
7 years ago
"Input(Filter) of Conv2DTransposeOp should not be null.");
7 years ago
PADDLE_ENFORCE(ctx->HasOutput("Output"),
7 years ago
"Output(Output) of Conv2DTransposeOp should not be null.");
7 years ago
auto in_dims = ctx->GetInputDim("Input");
auto filter_dims = ctx->GetInputDim("Filter");
std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
7 years ago
7 years ago
for (size_t i = 0; i < paddings.size(); ++i) {
7 years ago
PADDLE_ENFORCE_EQ(paddings[i], 0,
"No Padding allowed in conv transpose op.");
7 years ago
}
7 years ago
PADDLE_ENFORCE_EQ(in_dims.size(), 4,
7 years ago
"Conv2DTransposeOp input should be 4-D tensor.");
7 years ago
PADDLE_ENFORCE_EQ(filter_dims.size(), 4,
7 years ago
"Conv2DTransposeOp filter should be 4-D tensor.");
7 years ago
PADDLE_ENFORCE_EQ(in_dims[1], filter_dims[0],
"input and kernel input dimension should be equal.");
7 years ago
auto output_height = (in_dims[2] - 1) * strides[0] + filter_dims[2];
auto output_width = (in_dims[3] - 1) * strides[1] + filter_dims[3];
ctx->SetOutputDim("Output",
7 years ago
{in_dims[0], filter_dims[1], output_height, output_width});
7 years ago
}
7 years ago
Conv2DTransposeOpMaker::Conv2DTransposeOpMaker(
framework::OpProto* proto, framework::OpAttrChecker* op_checker)
7 years ago
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput(
"Input",
"(Tensor) The input tensor of convolution transpose operator. "
"The format of input tensor is NCHW, where N is batch size, C is the "
"number of input channels, H is the height of the image, and "
"W is the width of the image.");
7 years ago
AddInput("Filter",
"(Tensor) The filter tensor of convolution transpose operator."
7 years ago
"The format of the filter tensor is CMHW, where C is the number of "
7 years ago
"output image channels, M is the number of input image channels, "
"H is the height of the filter, and W is the width of the filter. "
7 years ago
"We enforce groups number == 1 and padding == 0 in "
"the convolution transpose scenario.");
7 years ago
AddOutput("Output",
"(Tensor) The output tensor of convolution transpose operator."
7 years ago
"The format of output tensor is also NCHW.");
7 years ago
AddAttr<std::vector<int>>("strides",
"strides of convolution transpose operator.")
7 years ago
.SetDefault({1, 1});
7 years ago
AddAttr<std::vector<int>>("paddings",
"paddings of convolution transpose operator.")
7 years ago
.SetDefault({0, 0});
AddComment(R"DOC(
Convolution Transpose Operator.
The convolution transpose operation calculates the output based on the input,
filter, strides, paddings, and groups parameters. The size of each dimension
of the parameters is checked in the infer-shape method.
7 years ago
)DOC");
7 years ago
}
7 years ago
7 years ago
void Conv2DTransposeOpGrad::InferShape(
framework::InferShapeContext* ctx) const {
7 years ago
auto in_dims = ctx->GetInputDim("Input");
auto filter_dims = ctx->GetInputDim("Filter");
if (ctx->HasOutput(framework::GradVarName("Input"))) {
ctx->SetOutputDim(framework::GradVarName("Input"), in_dims);
}
if (ctx->HasOutput(framework::GradVarName("Filter"))) {
ctx->SetOutputDim(framework::GradVarName("Filter"), filter_dims);
7 years ago
}
7 years ago
}
7 years ago
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
7 years ago
REGISTER_OP(conv2d_transpose, ops::Conv2DTransposeOp,
ops::Conv2DTransposeOpMaker, conv2d_transpose_grad,
7 years ago
ops::Conv2DTransposeOpGrad);
7 years ago
REGISTER_OP_CPU_KERNEL(
7 years ago
conv2d_transpose,
7 years ago
ops::GemmConv2DTransposeKernel<paddle::platform::CPUPlace, float>);
7 years ago
REGISTER_OP_CPU_KERNEL(
7 years ago
conv2d_transpose_grad,
7 years ago
ops::GemmConv2DTransposeGradKernel<paddle::platform::CPUPlace, float>);