You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/function/ContextProjectionOp.cpp

339 lines
12 KiB

/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "ContextProjectionOp.h"
#include "paddle/math/Matrix.h"
#include "paddle/math/Vector.h"
namespace paddle {
template <>
void ContextProjectionForward<DEVICE_TYPE_CPU>(Tensor& output,
const Tensor& input,
const Tensor& weight,
const Tensor& sequence,
size_t context_length,
int context_start,
size_t begin_pad,
bool is_padding) {
CHECK(output.getData() && input.getData() && sequence.getData());
CHECK_EQ(output.dims_.size(), 2);
CHECK_EQ(input.dims_.size(), 2);
CHECK_EQ(weight.dims_.size(), 2);
CHECK_EQ(sequence.dims_.size(), 1);
auto out_mat = std::make_shared<CpuMatrix>(
output.getData(), output.dims_[0], output.dims_[1]);
const auto in_mat = std::make_shared<CpuMatrix>(
input.getData(), input.dims_[0], input.dims_[1]);
const auto weight_mat =
!weight.getData()
? nullptr
: std::make_shared<CpuMatrix>(
weight.getData(), weight.dims_[0], weight.dims_[1]);
CpuIVector seq_vec(sequence.dims_[0],
reinterpret_cast<int*>(sequence.getData()));
CHECK_EQ(out_mat->getWidth(), in_mat->getWidth() * context_length);
const int* starts = seq_vec.getData();
const size_t num_sequences = seq_vec.getSize() - 1;
for (size_t i = 0; i < num_sequences; ++i) {
for (size_t j = 0; j < context_length; ++j) {
int begin = starts[i] + context_start + j;
int end = starts[i + 1] + context_start + j;
int dst_begin = starts[i];
int dst_end = starts[i + 1];
if (begin < starts[i]) {
int64_t pad_size =
std::min(starts[i] - begin, starts[i + 1] - starts[i]);
MatrixPtr mat = out_mat->subMatrix(starts[i], pad_size);
if (is_padding && weight_mat) {
MatrixPtr sub = weight_mat->subMatrix(j, pad_size);
mat->addAtOffset(*sub, j * in_mat->getWidth());
}
dst_begin = starts[i] + pad_size;
begin = starts[i];
}
if (end > starts[i + 1]) {
int64_t pad_size =
std::min(end - starts[i + 1], starts[i + 1] - starts[i]);
MatrixPtr mat = out_mat->subMatrix(starts[i + 1] - pad_size, pad_size);
if (is_padding && weight_mat) {
MatrixPtr sub = weight_mat->subMatrix(
begin_pad + context_start + j - pad_size, pad_size);
mat->addAtOffset(*sub, j * in_mat->getWidth());
}
dst_end = starts[i + 1] - pad_size;
end = starts[i + 1];
}
if (end <= begin) continue;
MatrixPtr src = in_mat->subMatrix(begin, end - begin);
MatrixPtr dst = out_mat->subMatrix(dst_begin, dst_end - dst_begin);
dst->addAtOffset(*src, j * in_mat->getWidth());
}
}
}
/**
* \param inputs[0] input value.
* \param inputs[1] input weight.
* \param inputs[2] input sequence.
* \param outputs[0] output value.
*/
template <DeviceType Device>
class ContextProjectionForwardFunc : public FunctionBase {
public:
void init(const FuncConfig& config) override {
context_length_ = config.get<size_t>("context_length");
context_start_ = config.get<int>("context_start");
begin_pad_ = config.get<size_t>("begin_pad");
is_padding_ = config.get<bool>("is_padding");
}
void calc(const Arguments& inputs,
const Arguments& outputs,
const Arguments& inouts) override {
CHECK_EQ(3, inputs.size());
CHECK_EQ(1, outputs.size());
CHECK_EQ(0, inouts.size());
ContextProjectionForward<Device>((Tensor&)outputs[0],
inputs[0],
inputs[1],
inputs[2],
context_length_,
context_start_,
begin_pad_,
is_padding_);
}
private:
size_t context_length_;
int context_start_;
size_t begin_pad_;
bool is_padding_;
};
template <>
void ContextProjectionBackward<DEVICE_TYPE_CPU>(Tensor& out_grad,
Tensor& in_grad,
Tensor& w_grad,
const Tensor& sequence,
size_t context_length,
int context_start,
size_t begin_pad,
bool is_padding,
size_t total_pad) {
CHECK(out_grad.getData() && sequence.getData());
CHECK_EQ(out_grad.dims_.size(), 2);
CHECK_EQ(in_grad.dims_.size(), 2);
CHECK_EQ(w_grad.dims_.size(), 2);
CHECK_EQ(sequence.dims_.size(), 1);
auto out_grad_mat = std::make_shared<CpuMatrix>(
out_grad.getData(), out_grad.dims_[0], out_grad.dims_[1]);
const auto in_grad_mat =
!in_grad.getData()
? nullptr
: std::make_shared<CpuMatrix>(
in_grad.getData(), in_grad.dims_[0], in_grad.dims_[1]);
const auto w_grad_mat =
!w_grad.getData()
? nullptr
: std::make_shared<CpuMatrix>(
w_grad.getData(), w_grad.dims_[0], w_grad.dims_[1]);
CpuIVector seq_vec(sequence.dims_[0],
reinterpret_cast<int*>(sequence.getData()));
CHECK_EQ(out_grad_mat->getWidth(), in_grad_mat->getWidth() * context_length);
size_t input_dim = in_grad_mat ? in_grad_mat->getWidth()
: w_grad_mat ? w_grad_mat->getWidth() : 0;
CHECK_EQ(out_grad_mat->getWidth(), input_dim * context_length);
const int* starts = seq_vec.getData();
size_t num_sequences = seq_vec.getSize() - 1;
for (size_t i = 0; i < num_sequences; ++i) {
for (size_t j = 0; j < context_length; ++j) {
int begin = starts[i] + context_start + j;
int end = starts[i + 1] + context_start + j;
int dst_begin = starts[i];
int dst_end = starts[i + 1];
if (begin < starts[i]) {
int64_t pad_size =
std::min(starts[i] - begin, starts[i + 1] - starts[i]);
if (is_padding && w_grad_mat) {
MatrixPtr mat = out_grad_mat->subMatrix(starts[i], pad_size);
MatrixPtr sub = w_grad_mat->subMatrix(j, pad_size);
sub->addAtOffset(*mat, j * input_dim);
}
dst_begin = starts[i] + pad_size;
begin = starts[i];
}
if (end > starts[i + 1]) {
int64_t pad_size =
std::min(end - starts[i + 1], starts[i + 1] - starts[i]);
if (is_padding && w_grad_mat) {
MatrixPtr mat =
out_grad_mat->subMatrix(starts[i + 1] - pad_size, pad_size);
MatrixPtr sub = w_grad_mat->subMatrix(
begin_pad + context_start + j - pad_size, pad_size);
sub->addAtOffset(*mat, j * input_dim);
}
dst_end = starts[i + 1] - pad_size;
end = starts[i + 1];
}
if (end <= begin) continue;
if (!in_grad_mat) continue;
MatrixPtr src = in_grad_mat->subMatrix(begin, end - begin);
MatrixPtr dst = out_grad_mat->subMatrix(dst_begin, dst_end - dst_begin);
src->addAtOffset(*dst, j * input_dim);
}
}
}
/**
* \param inputs[0] input grad.
* \param inputs[1] weight grad.
* \param inputs[2] input sequence.
* \param outputs[0] output value.
*/
template <DeviceType Device>
class ContextProjectionBackwardFunc : public FunctionBase {
public:
void init(const FuncConfig& config) override {
context_length_ = config.get<size_t>("context_length");
context_start_ = config.get<int>("context_start");
begin_pad_ = config.get<size_t>("begin_pad");
is_padding_ = config.get<bool>("is_padding");
total_pad_ = config.get<size_t>("total_pad");
}
void calc(const Arguments& inputs,
const Arguments& outputs,
const Arguments& inouts) override {
CHECK_EQ(3, inputs.size());
CHECK_EQ(1, outputs.size());
CHECK_EQ(0, inouts.size());
ContextProjectionBackward<Device>((Tensor&)outputs[0],
(Tensor&)inputs[0],
(Tensor&)inputs[1],
inputs[2],
context_length_,
context_start_,
begin_pad_,
is_padding_,
total_pad_);
}
private:
size_t context_length_;
int context_start_;
size_t begin_pad_;
bool is_padding_;
size_t total_pad_;
};
/**
* \param inputs[0] input grad.
* \param inputs[1] input sequence.
* \param outputs[0] output grad.
*/
template <DeviceType Device>
class ContextProjectionBackwardDataFunc : public FunctionBase {
public:
void init(const FuncConfig& config) override {
context_length_ = config.get<size_t>("context_length");
context_start_ = config.get<int>("context_start");
}
void calc(const Arguments& inputs,
const Arguments& outputs,
const Arguments& inouts) override {
CHECK_EQ(2, inputs.size());
CHECK_EQ(1, outputs.size());
CHECK_EQ(0, inouts.size());
ContextProjectionBackwardData<Device>((Tensor&)outputs[0],
(Tensor&)inputs[0],
inputs[1],
context_length_,
context_start_);
}
private:
size_t context_length_;
int context_start_;
};
/**
* \param inputs[0] weight grad.
* \param inputs[1] input sequence.
* \param outputs[0] output grad.
*/
template <DeviceType Device>
class ContextProjectionBackwardWeightFunc : public FunctionBase {
public:
void init(const FuncConfig& config) override {
context_length_ = config.get<size_t>("context_length");
context_start_ = config.get<int>("context_start");
begin_pad_ = config.get<size_t>("begin_pad");
total_pad_ = config.get<size_t>("total_pad");
}
void calc(const Arguments& inputs,
const Arguments& outputs,
const Arguments& inouts) override {
CHECK_EQ(2, inputs.size());
CHECK_EQ(1, outputs.size());
CHECK_EQ(0, inouts.size());
ContextProjectionBackwardWeight<Device>((Tensor&)outputs[0],
(Tensor&)inputs[0],
inputs[1],
context_length_,
context_start_,
total_pad_,
begin_pad_);
}
private:
size_t context_length_;
int context_start_;
size_t begin_pad_;
size_t total_pad_;
};
REGISTER_TYPED_FUNC(ContextProjectionForward,
CPU,
ContextProjectionForwardFunc);
REGISTER_TYPED_FUNC(ContextProjectionBackward,
CPU,
ContextProjectionBackwardFunc);
#ifndef PADDLE_ONLY_CPU
REGISTER_TYPED_FUNC(ContextProjectionForward,
GPU,
ContextProjectionForwardFunc);
REGISTER_TYPED_FUNC(ContextProjectionBackward,
GPU,
ContextProjectionBackwardFunc);
REGISTER_TYPED_FUNC(ContextProjectionBackwardData,
GPU,
ContextProjectionBackwardDataFunc);
REGISTER_TYPED_FUNC(ContextProjectionBackwardWeight,
GPU,
ContextProjectionBackwardWeightFunc);
#endif
} // namespace paddle