You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/doc/design/python_api.md

217 lines
7.8 KiB

# Design Doc: Python API
8 years ago
Due to the refactorization of the PaddlePaddle core, we need Python classes to construct corresponding protobuf messages that describe a DL program.
8 years ago
| Python classes | Protobuf messages |
| --- | --- |
| Program | ProgramDesc |
| Block | BlockDesc |
| Operator | OpDesc |
| Variable | VarDesc |
8 years ago
Please be aware that these Python classes need to maintain some construction-time information, which are not part of the protobuf messages.
## Core Concepts
### Program
8 years ago
A `ProgramDesc` describes a [DL program](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/program.md), which is composed of an array of `BlockDesc`s. A `BlockDesc` refers to its parent block by its index in the array. For example, operators in the step block of an RNN operator needs to be able to access variables in its ancessor blocks.
Whenever we create a block, we need set its parent block to the current block, so the Python class `Program` needs to maintain a data member `current_block`.
```python
class Program(objects):
def __init__(self):
8 years ago
self.proto = core.NewProgram() # a C++ ProgramDesc pointer.
self.blocks = vector<Block>()
8 years ago
self.blocks.append(Block(self, -1)) # the global block
self.current_block = 0 # initialized to the global block
8 years ago
def global_block():
return self.blocks[0]
def current_block():
8 years ago
return self.get_block(self.current_block)
8 years ago
def rollback():
self.current_block = self.current_block().parent_idx
def create_block():
new_block_idx = len(self.block)
8 years ago
self.blocks.append(Block(self, self.current_block))
self.current_block = new_block_idx
return current_block()
```
8 years ago
`Program` is an accessor to the protobuf message `ProgramDesc`, which is created in C++ space, because the InferShape function is in C++, which manipulates `VarDesc` messages, which are in turn members of `BlockDesc`, which is a member of `ProgramDesc`.
8 years ago
`Program` creates the first block as the global block in its constructor. All parameters and their initializer operators are in the global block.
8 years ago
### Block
8 years ago
8 years ago
A [Block](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/block.md) includes
8 years ago
8 years ago
1. a map from variable names to an instance of the Python `Variable` class, and
1. a list of `Operator` instances.
```python
class Block(objects):
8 years ago
def __init__(self, program, parent_idx):
self.proto = core.NewBlock(program.proto)
self.program = program
8 years ago
self.vars = map<string, Variable>()
self.ops = vector<Operator>()
self.parent_idx = parent_idx
8 years ago
8 years ago
def create_var(self, ...):
8 years ago
return Variable(self, ...)
def _create_global_var(self, ...):
program.global_block().create_var(...)
def create_parameter(self, name, ...):
# Parameter is a subclass of variable. See Parameter section for details.
self.vars[name] = Parameter(self._create_global_var(...), ...)
return self.vars[name]
8 years ago
def append_operator(self, ...):
8 years ago
self.ops.append(Operator(self, ...))
8 years ago
def prepend_operator(self, ...): # Parameter's ctor prepands initialize operators.
self.ops.prepend(Operator(self, ...))
```
8 years ago
8 years ago
`create_parameter` is necessary because parameters are global variables, those defined in the global block, but can be created in some sub-blocks, e.g., an FC layer in the step block of an RNN operator.
8 years ago
8 years ago
`prepand_operator` is necessary because the constructor of `Parameter` needs to create the initialize (or load) operator of the parameter, and would like to put it in the *preamble* of the global block.
### Operator
8 years ago
The `Operator` class fills in the `OpDesc` message and calls the C++ function `InferShape` to infer output shape from input shape.
```python
class Operator(object):
8 years ago
def __init__(self,
block, # Block
type, # string
inputs, # dict<string, Variable>
outputs,# dict<stirng, Variable>
attrs # dict<string, Any>
):
self.proto = core.NewOpDesc(block.proto, type, inputs, outputs, attrs)
core.infer_shape(self.proto, inputs, outputs)
8 years ago
def type(self):
8 years ago
return self.proto.type()
```
8 years ago
`Operator` creates the `OpDesc` message in C++ space, so could it call the `InferShape` function, which is in C++.
8 years ago
### Variable
8 years ago
Operators take Variables as its inputs and outputs.
```python
class Variable(object):
8 years ago
def __init__(self,
block=None, # Block
name=None, # string
shape, # tuple
dtype="float32", # string
lod_level=None # int
):
if name is None:
name = unique_name_generator()
self.name = name
self.block = block
8 years ago
self.proto = core.NewVarDesc(block.proto, name, shape, lod_level)
self.writer = None
```
8 years ago
Please be aware of `self.writer`, that tracks operator who creates the variable. It possible that there are more than one operators who write a variable, but in Python space, each writes to a variable is represented by a Variable class. This is guaranteed by the fact that **`core.NewVarDesc` must NOT create a new `VarDesc` message if its name already exists in the specified block**.
### Parameter
8 years ago
A parameter is a global variable with an initializer (or load) operator.
8 years ago
```python
class Parameter(Variable):
8 years ago
def __init__(self,
block=None, # Block
name=None, # string
shape, # tuple
dtype="float32", # string
lod_level=None # int
trainable, # bool
initialize_op_attrs,
optimize_op_attrs):
super(Parameter, self).__init__(block, name, shape, dtype, lod_level)
self.trainable = trainable
self.optimize_op_attrs = optimize_op_attrs
block.prepend(Operator(block, # Block
initialize_op_attrs['type'], # string
None, # no inputs
self, # output is the parameter
initialize_op_attrs)
```
8 years ago
When users create a parameter, s/he can call
8 years ago
```python
program.create_parameter(
...,
init_attr={
type: "uniform_random",
min: -1.0,
max: 1.0,
})
)
```
8 years ago
In above example, `init_attr.type` names an initialize operator. It can also name the load operator
```python
init_attr={
type: "load",
filename: "something.numpy",
}
```
8 years ago
`optimize_op_attrs` is not in the `VarDesc` message, but kept in the Python instance, as it will be used in the Python space when creating the optimize operator's `OpDesc`, and will be in the `OpDesc` message.
## Layer Functions
8 years ago
A layer is a Python function that creates some operators and variables. Layers simplify the work of application programmers.
### Data Layer
```python
8 years ago
def data_layer(name, type, column_name):
block = the_current_program.glolal_block()
var = block.create_global_var(
name=name,
shape=[None] + type.dims(),
dtype=type.dtype)
8 years ago
block.prepend_operator(block,
type="Feed",
inputs = None,
outputs = [var],
{column_name: column_name})
return var
```
8 years ago
The input to the feed operator is a special variable in the global scope, which is the output of [Python readers](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/reader/README.md).
### FC Layer
```python
def fc_layer(input, size, ...):
block = program.current_block()
w = block.create_parameter(...)
b = block.create_parameter(...)
8 years ago
out = block.create_var()
8 years ago
op = block.append_operator("FC", X=input, W=w, b=b, out=out)
out.writer = op
return out
```