|
|
|
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
from __future__ import print_function
|
|
|
|
|
|
|
|
import unittest
|
|
|
|
import numpy as np
|
|
|
|
from op_test import OpTest
|
|
|
|
import paddle
|
|
|
|
import paddle.fluid as fluid
|
|
|
|
import paddle.fluid.core as core
|
|
|
|
from paddle.fluid.op import Operator
|
|
|
|
|
|
|
|
|
|
|
|
class TestUniqueOp(OpTest):
|
|
|
|
def setUp(self):
|
|
|
|
self.op_type = "unique"
|
|
|
|
self.init_config()
|
|
|
|
|
|
|
|
def test_check_output(self):
|
|
|
|
self.check_output()
|
|
|
|
|
|
|
|
def init_config(self):
|
|
|
|
self.inputs = {'X': np.array([2, 3, 3, 1, 5, 3], dtype='int64'), }
|
|
|
|
self.attrs = {'dtype': int(core.VarDesc.VarType.INT32)}
|
|
|
|
self.outputs = {
|
|
|
|
'Out': np.array(
|
|
|
|
[2, 3, 1, 5], dtype='int64'),
|
|
|
|
'Index': np.array(
|
|
|
|
[0, 1, 1, 2, 3, 1], dtype='int32')
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
class TestOne(TestUniqueOp):
|
|
|
|
def init_config(self):
|
|
|
|
self.inputs = {'X': np.array([2], dtype='int64'), }
|
|
|
|
self.attrs = {'dtype': int(core.VarDesc.VarType.INT32)}
|
|
|
|
self.outputs = {
|
|
|
|
'Out': np.array(
|
|
|
|
[2], dtype='int64'),
|
|
|
|
'Index': np.array(
|
|
|
|
[0], dtype='int32')
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
class TestRandom(TestUniqueOp):
|
|
|
|
def init_config(self):
|
|
|
|
self.inputs = {'X': np.random.randint(0, 100, (150, ), dtype='int64')}
|
|
|
|
self.attrs = {'dtype': int(core.VarDesc.VarType.INT64)}
|
|
|
|
np_unique, np_index, reverse_index = np.unique(self.inputs['X'], True,
|
|
|
|
True)
|
|
|
|
np_tuple = [(np_unique[i], np_index[i]) for i in range(len(np_unique))]
|
|
|
|
np_tuple.sort(key=lambda x: x[1])
|
|
|
|
target_out = np.array([i[0] for i in np_tuple], dtype='int64')
|
|
|
|
target_index = np.array(
|
|
|
|
[list(target_out).index(i) for i in self.inputs['X']],
|
|
|
|
dtype='int64')
|
|
|
|
|
|
|
|
self.outputs = {'Out': target_out, 'Index': target_index}
|
|
|
|
|
|
|
|
|
|
|
|
class TestUniqueRaiseError(unittest.TestCase):
|
|
|
|
def test_errors(self):
|
|
|
|
def test_type():
|
|
|
|
fluid.layers.unique([10])
|
|
|
|
|
|
|
|
self.assertRaises(TypeError, test_type)
|
|
|
|
|
|
|
|
def test_dtype():
|
|
|
|
data = fluid.data(shape=[10], dtype="float16", name="input")
|
|
|
|
fluid.layers.unique(data)
|
|
|
|
|
|
|
|
self.assertRaises(TypeError, test_dtype)
|
|
|
|
|
|
|
|
|
|
|
|
@unittest.skipIf(not core.is_compiled_with_cuda(),
|
|
|
|
"core is not compiled with CUDA")
|
|
|
|
class TestOneGPU(TestUniqueOp):
|
|
|
|
def init_config(self):
|
|
|
|
self.inputs = {'X': np.array([2], dtype='int64'), }
|
|
|
|
self.attrs = {'dtype': int(core.VarDesc.VarType.INT32)}
|
|
|
|
self.outputs = {
|
|
|
|
'Out': np.array(
|
|
|
|
[2], dtype='int64'),
|
|
|
|
'Index': np.array(
|
|
|
|
[0], dtype='int32')
|
|
|
|
}
|
|
|
|
|
|
|
|
def test_check_output(self):
|
|
|
|
if core.is_compiled_with_cuda():
|
|
|
|
place = core.CUDAPlace(0)
|
|
|
|
self.check_output_with_place(place, atol=1e-5)
|
|
|
|
|
|
|
|
|
|
|
|
@unittest.skipIf(not core.is_compiled_with_cuda(),
|
|
|
|
"core is not compiled with CUDA")
|
|
|
|
class TestRandomGPU(TestUniqueOp):
|
|
|
|
def init_config(self):
|
|
|
|
self.inputs = {'X': np.random.randint(0, 100, (150, ), dtype='int64')}
|
|
|
|
self.attrs = {'dtype': int(core.VarDesc.VarType.INT64)}
|
|
|
|
np_unique, np_index, reverse_index = np.unique(self.inputs['X'], True,
|
|
|
|
True)
|
|
|
|
np_tuple = [(np_unique[i], np_index[i]) for i in range(len(np_unique))]
|
|
|
|
np_tuple.sort(key=lambda x: x[1])
|
|
|
|
target_out = np.array([i[0] for i in np_tuple], dtype='int64')
|
|
|
|
target_index = np.array(
|
|
|
|
[list(target_out).index(i) for i in self.inputs['X']],
|
|
|
|
dtype='int64')
|
|
|
|
|
|
|
|
self.outputs = {'Out': target_out, 'Index': target_index}
|
|
|
|
|
|
|
|
def test_check_output(self):
|
|
|
|
if core.is_compiled_with_cuda():
|
|
|
|
place = core.CUDAPlace(0)
|
|
|
|
self.check_output_with_place(place, atol=1e-5)
|
|
|
|
|
|
|
|
|
|
|
|
class TestSortedUniqueOp(TestUniqueOp):
|
|
|
|
def init_config(self):
|
|
|
|
self.inputs = {'X': np.array([2, 3, 3, 1, 5, 3], dtype='int64')}
|
|
|
|
unique, indices, inverse, count = np.unique(
|
|
|
|
self.inputs['X'],
|
|
|
|
return_index=True,
|
|
|
|
return_inverse=True,
|
|
|
|
return_counts=True,
|
|
|
|
axis=None)
|
|
|
|
self.attrs = {
|
|
|
|
'dtype': int(core.VarDesc.VarType.INT32),
|
|
|
|
"return_index": True,
|
|
|
|
"return_inverse": True,
|
|
|
|
"return_counts": True,
|
|
|
|
"axis": None,
|
|
|
|
"is_sorted": True
|
|
|
|
}
|
|
|
|
self.outputs = {
|
|
|
|
'Out': unique,
|
|
|
|
'Indices': indices,
|
|
|
|
"Index": inverse,
|
|
|
|
"Counts": count,
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
class TestUniqueOpAxisNone(TestUniqueOp):
|
|
|
|
def init_config(self):
|
|
|
|
self.inputs = {'X': np.random.random((4, 7, 10)).astype('float64')}
|
|
|
|
unique, indices, inverse, counts = np.unique(
|
|
|
|
self.inputs['X'],
|
|
|
|
return_index=True,
|
|
|
|
return_inverse=True,
|
|
|
|
return_counts=True,
|
|
|
|
axis=None)
|
|
|
|
self.attrs = {
|
|
|
|
'dtype': int(core.VarDesc.VarType.INT32),
|
|
|
|
"return_index": True,
|
|
|
|
"return_inverse": True,
|
|
|
|
"return_counts": True,
|
|
|
|
"axis": None,
|
|
|
|
"is_sorted": True
|
|
|
|
}
|
|
|
|
self.outputs = {
|
|
|
|
'Out': unique,
|
|
|
|
'Indices': indices,
|
|
|
|
"Index": inverse,
|
|
|
|
"Counts": counts,
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
class TestUniqueOpAxis1(TestUniqueOp):
|
|
|
|
def init_config(self):
|
|
|
|
self.inputs = {'X': np.random.random((3, 8, 8)).astype('float64')}
|
|
|
|
unique, indices, inverse, counts = np.unique(
|
|
|
|
self.inputs['X'],
|
|
|
|
return_index=True,
|
|
|
|
return_inverse=True,
|
|
|
|
return_counts=True,
|
|
|
|
axis=1)
|
|
|
|
self.attrs = {
|
|
|
|
'dtype': int(core.VarDesc.VarType.INT32),
|
|
|
|
"return_index": True,
|
|
|
|
"return_inverse": True,
|
|
|
|
"return_counts": True,
|
|
|
|
"axis": [1],
|
|
|
|
"is_sorted": True
|
|
|
|
}
|
|
|
|
self.outputs = {
|
|
|
|
'Out': unique,
|
|
|
|
'Indices': indices,
|
|
|
|
"Index": inverse,
|
|
|
|
"Counts": counts,
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
class TestUniqueAPI(unittest.TestCase):
|
|
|
|
def test_dygraph_api_out(self):
|
|
|
|
paddle.disable_static()
|
|
|
|
x_data = x_data = np.random.randint(0, 10, (120))
|
|
|
|
x = paddle.to_tensor(x_data)
|
|
|
|
out = paddle.unique(x)
|
|
|
|
expected_out = np.unique(x_data)
|
|
|
|
self.assertTrue((out.numpy() == expected_out).all(), True)
|
|
|
|
paddle.enable_static()
|
|
|
|
|
|
|
|
def test_dygraph_api_attr(self):
|
|
|
|
paddle.disable_static()
|
|
|
|
x_data = np.random.random((3, 5, 5)).astype("float32")
|
|
|
|
x = paddle.to_tensor(x_data)
|
|
|
|
out, index, inverse, counts = paddle.unique(
|
|
|
|
x,
|
|
|
|
return_index=True,
|
|
|
|
return_inverse=True,
|
|
|
|
return_counts=True,
|
|
|
|
axis=0)
|
|
|
|
np_out, np_index, np_inverse, np_counts = np.unique(
|
|
|
|
x_data,
|
|
|
|
return_index=True,
|
|
|
|
return_inverse=True,
|
|
|
|
return_counts=True,
|
|
|
|
axis=0)
|
|
|
|
self.assertTrue((out.numpy() == np_out).all(), True)
|
|
|
|
self.assertTrue((index.numpy() == np_index).all(), True)
|
|
|
|
self.assertTrue((inverse.numpy() == np_inverse).all(), True)
|
|
|
|
self.assertTrue((counts.numpy() == np_counts).all(), True)
|
|
|
|
paddle.enable_static()
|
|
|
|
|
|
|
|
def test_dygraph_attr_dtype(self):
|
|
|
|
paddle.disable_static()
|
|
|
|
x_data = x_data = np.random.randint(0, 10, (120))
|
|
|
|
x = paddle.to_tensor(x_data)
|
|
|
|
out, indices, inverse, counts = paddle.unique(
|
|
|
|
x,
|
|
|
|
return_index=True,
|
|
|
|
return_inverse=True,
|
|
|
|
return_counts=True,
|
|
|
|
dtype="int32")
|
|
|
|
expected_out, np_indices, np_inverse, np_counts = np.unique(
|
|
|
|
x_data, return_index=True, return_inverse=True, return_counts=True)
|
|
|
|
self.assertTrue((out.numpy() == expected_out).all(), True)
|
|
|
|
self.assertTrue((indices.numpy() == np_indices).all(), True)
|
|
|
|
self.assertTrue((inverse.numpy() == np_inverse).all(), True)
|
|
|
|
self.assertTrue((counts.numpy() == np_counts).all(), True)
|
|
|
|
paddle.enable_static()
|
|
|
|
|
|
|
|
def test_static_graph(self):
|
|
|
|
with paddle.static.program_guard(paddle.static.Program(),
|
|
|
|
paddle.static.Program()):
|
|
|
|
x = paddle.data(name='x', shape=[3, 2], dtype='float64')
|
|
|
|
unique, inverse, counts = paddle.unique(
|
|
|
|
x, return_inverse=True, return_counts=True, axis=0)
|
|
|
|
place = paddle.CPUPlace()
|
|
|
|
exe = paddle.static.Executor(place)
|
|
|
|
x_np = np.array([[1, 2], [3, 4], [1, 2]]).astype('float64')
|
|
|
|
result = exe.run(feed={"x": x_np},
|
|
|
|
fetch_list=[unique, inverse, counts])
|
|
|
|
np_unique, np_inverse, np_counts = np.unique(
|
|
|
|
x_np, return_inverse=True, return_counts=True, axis=0)
|
|
|
|
self.assertTrue(np.allclose(result[0], np_unique))
|
|
|
|
self.assertTrue(np.allclose(result[1], np_inverse))
|
|
|
|
self.assertTrue(np.allclose(result[2], np_counts))
|
|
|
|
|
|
|
|
|
|
|
|
class TestUniqueError(unittest.TestCase):
|
|
|
|
def test_input_dtype(self):
|
|
|
|
def test_x_dtype():
|
|
|
|
with paddle.static.program_guard(paddle.static.Program(),
|
|
|
|
paddle.static.Program()):
|
|
|
|
x = paddle.data(name='x', shape=[10, 10], dtype='float16')
|
|
|
|
result = paddle.unique(x)
|
|
|
|
|
|
|
|
self.assertRaises(TypeError, test_x_dtype)
|
|
|
|
|
|
|
|
def test_attr(self):
|
|
|
|
x = paddle.data(name='x', shape=[10, 10], dtype='float64')
|
|
|
|
|
|
|
|
def test_return_index():
|
|
|
|
result = paddle.unique(x, return_index=0)
|
|
|
|
|
|
|
|
self.assertRaises(TypeError, test_return_index)
|
|
|
|
|
|
|
|
def test_return_inverse():
|
|
|
|
result = paddle.unique(x, return_inverse='s')
|
|
|
|
|
|
|
|
self.assertRaises(TypeError, test_return_inverse)
|
|
|
|
|
|
|
|
def test_return_counts():
|
|
|
|
result = paddle.unique(x, return_counts=3)
|
|
|
|
|
|
|
|
self.assertRaises(TypeError, test_return_counts)
|
|
|
|
|
|
|
|
def test_axis():
|
|
|
|
result = paddle.unique(x, axis='12')
|
|
|
|
|
|
|
|
def test_dtype():
|
|
|
|
result = paddle.unique(x, dtype='float64')
|
|
|
|
|
|
|
|
self.assertRaises(TypeError, test_axis)
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
unittest.main()
|