|
|
|
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
//
|
|
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
// you may not use this file except in compliance with the License.
|
|
|
|
// You may obtain a copy of the License at
|
|
|
|
//
|
|
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
//
|
|
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
// See the License for the specific language governing permissions and
|
|
|
|
// limitations under the License.
|
|
|
|
|
|
|
|
#include "paddle/fluid/framework/ir/fc_lstm_fuse_pass.h"
|
|
|
|
#include <string>
|
|
|
|
#include "paddle/fluid/framework/lod_tensor.h"
|
|
|
|
|
|
|
|
namespace paddle {
|
|
|
|
namespace framework {
|
|
|
|
namespace ir {
|
|
|
|
|
|
|
|
int BuildFusion(Graph* graph, const std::string& name_scope, Scope* scope,
|
|
|
|
bool with_fc_bias) {
|
|
|
|
GraphPatternDetector gpd;
|
|
|
|
auto* pattern = gpd.mutable_pattern();
|
|
|
|
|
|
|
|
// Build pattern
|
|
|
|
PDNode* x = pattern->NewNode(patterns::PDNodeName(name_scope, "x"))
|
|
|
|
->assert_is_op_input("mul")
|
|
|
|
->assert_var_not_persistable();
|
|
|
|
patterns::FC fc_pattern(pattern, name_scope);
|
|
|
|
|
|
|
|
// fc_out is a tmp var, will be removed after fuse, so marked as intermediate.
|
|
|
|
auto* fc_out = fc_pattern(x, with_fc_bias)->AsIntermediate();
|
|
|
|
patterns::LSTM lstm_pattern(pattern, name_scope);
|
|
|
|
lstm_pattern(fc_out);
|
|
|
|
|
|
|
|
// Create New OpDesc
|
|
|
|
auto lstm_creator = [&](Node* lstm, Node* input, Node* weight_x,
|
|
|
|
Node* weight_h, Node* bias, Node* hidden, Node* cell,
|
|
|
|
Node* xx, Node* fc_bias) {
|
|
|
|
OpDesc op_desc;
|
|
|
|
op_desc.SetType("fusion_lstm");
|
|
|
|
#define SET_IN(Key, node__) op_desc.SetInput(#Key, {node__->Name()});
|
|
|
|
SET_IN(X, input);
|
|
|
|
SET_IN(WeightX, weight_x);
|
|
|
|
SET_IN(WeightH, weight_h);
|
|
|
|
SET_IN(Bias, bias);
|
|
|
|
#undef SET_IN
|
|
|
|
if (with_fc_bias) {
|
|
|
|
// Add FC-bias with LSTM-bias and create a new weight
|
|
|
|
PADDLE_ENFORCE(scope);
|
|
|
|
const std::string& new_bias_var = patterns::UniqueKey("NewBias");
|
|
|
|
auto* bias_var = scope->Var(new_bias_var);
|
|
|
|
PADDLE_ENFORCE(bias_var);
|
|
|
|
auto* bias_tensor = bias_var->GetMutable<framework::LoDTensor>();
|
|
|
|
auto* lstm_bias_var = scope->FindVar(bias->Name());
|
|
|
|
PADDLE_ENFORCE(lstm_bias_var);
|
|
|
|
const auto& lstm_bias_tensor = lstm_bias_var->Get<framework::LoDTensor>();
|
|
|
|
bias_tensor->Resize(lstm_bias_tensor.dims());
|
|
|
|
|
|
|
|
auto* fc_bias_var = scope->FindVar(fc_bias->Name());
|
|
|
|
const auto& fc_bias_tensor = fc_bias_var->Get<framework::LoDTensor>();
|
|
|
|
|
|
|
|
auto* data = bias_tensor->mutable_data<float>(platform::CPUPlace());
|
|
|
|
|
|
|
|
for (int i = 0; i < bias_tensor->numel(); i++) {
|
|
|
|
data[i] =
|
|
|
|
fc_bias_tensor.data<float>()[i] + lstm_bias_tensor.data<float>()[i];
|
|
|
|
}
|
|
|
|
op_desc.SetInput("Bias", {new_bias_var});
|
|
|
|
}
|
|
|
|
|
|
|
|
// Create temp variables.
|
|
|
|
const std::string BatchedInput = patterns::UniqueKey("BatchedInput");
|
|
|
|
const std::string BatchedCellPreAct =
|
|
|
|
patterns::UniqueKey("BatchedCellPreAct");
|
|
|
|
const std::string BatchedGate = patterns::UniqueKey("BatchedGate");
|
|
|
|
const std::string CheckedCell = patterns::UniqueKey("CheckedCell");
|
|
|
|
|
|
|
|
scope->Var(BatchedInput)->GetMutable<framework::LoDTensor>();
|
|
|
|
scope->Var(BatchedCellPreAct)->GetMutable<framework::LoDTensor>();
|
|
|
|
scope->Var(BatchedGate)->GetMutable<framework::LoDTensor>();
|
|
|
|
scope->Var(CheckedCell)->GetMutable<framework::LoDTensor>();
|
|
|
|
|
|
|
|
op_desc.SetInput("H0", {});
|
|
|
|
op_desc.SetInput("C0", {});
|
|
|
|
op_desc.SetOutput("Hidden", {hidden->Name()});
|
|
|
|
op_desc.SetOutput("Cell", {cell->Name()});
|
|
|
|
op_desc.SetOutput("XX", {xx->Name()});
|
|
|
|
op_desc.SetOutput("BatchedGate", {BatchedGate});
|
|
|
|
op_desc.SetOutput("BatchCellPreAct", {BatchedCellPreAct});
|
|
|
|
op_desc.SetOutput("BatchedInput", {BatchedInput});
|
|
|
|
op_desc.SetOutput("CheckedCell", {CheckedCell});
|
|
|
|
op_desc.SetAttr("is_reverse", lstm->Op()->GetAttr("is_reverse"));
|
|
|
|
op_desc.SetAttr("use_peepholes", lstm->Op()->GetAttr("use_peepholes"));
|
|
|
|
// TODO(TJ): get from attr
|
|
|
|
op_desc.SetAttr("use_seq", true);
|
|
|
|
|
|
|
|
PADDLE_ENFORCE(graph->Has(kParamScopeAttr));
|
|
|
|
auto* scope = graph->Get<Scope*>(kParamScopeAttr);
|
|
|
|
#define OP_SET_OUT(x) \
|
|
|
|
const std::string x = patterns::UniqueKey(#x); \
|
|
|
|
op_desc.SetOutput(#x, {x}); \
|
|
|
|
scope->Var(x)->GetMutable<LoDTensor>()
|
|
|
|
OP_SET_OUT(BatchedCell);
|
|
|
|
OP_SET_OUT(BatchedHidden);
|
|
|
|
OP_SET_OUT(ReorderedH0);
|
|
|
|
OP_SET_OUT(ReorderedC0);
|
|
|
|
#undef OP_SET_OUT
|
|
|
|
|
|
|
|
auto* op = graph->CreateOpNode(&op_desc);
|
|
|
|
IR_NODE_LINK_TO(input, op);
|
|
|
|
IR_NODE_LINK_TO(weight_x, op);
|
|
|
|
IR_NODE_LINK_TO(weight_h, op);
|
|
|
|
IR_NODE_LINK_TO(bias, op);
|
|
|
|
IR_NODE_LINK_TO(op, hidden);
|
|
|
|
return op;
|
|
|
|
};
|
|
|
|
|
|
|
|
int fusion_count{0};
|
|
|
|
|
|
|
|
auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
|
|
|
|
Graph* g) {
|
|
|
|
GET_IR_NODE_FROM_SUBGRAPH(lstm, lstm, lstm_pattern);
|
|
|
|
GET_IR_NODE_FROM_SUBGRAPH(Weight, Weight, lstm_pattern);
|
|
|
|
GET_IR_NODE_FROM_SUBGRAPH(Bias, Bias, lstm_pattern);
|
|
|
|
GET_IR_NODE_FROM_SUBGRAPH(Cell, Cell, lstm_pattern);
|
|
|
|
GET_IR_NODE_FROM_SUBGRAPH(Hidden, Hidden, lstm_pattern);
|
|
|
|
GET_IR_NODE_FROM_SUBGRAPH(w, w, fc_pattern);
|
|
|
|
GET_IR_NODE_FROM_SUBGRAPH(mul, mul, fc_pattern);
|
|
|
|
if (with_fc_bias) {
|
|
|
|
GET_IR_NODE_FROM_SUBGRAPH(fc_out, Out, fc_pattern);
|
|
|
|
GET_IR_NODE_FROM_SUBGRAPH(fc_bias, bias, fc_pattern);
|
|
|
|
GET_IR_NODE_FROM_SUBGRAPH(elementwise_add, elementwise_add, fc_pattern);
|
|
|
|
lstm_creator(lstm, subgraph.at(x), w, Weight, Bias, Hidden, Cell, fc_out,
|
|
|
|
fc_bias);
|
|
|
|
// Remove unneeded nodes.
|
|
|
|
std::unordered_set<const Node*> marked_nodes(
|
|
|
|
{mul, lstm, elementwise_add, fc_bias});
|
|
|
|
GraphSafeRemoveNodes(graph, marked_nodes);
|
|
|
|
} else {
|
|
|
|
GET_IR_NODE_FROM_SUBGRAPH(fc_out, mul_out, fc_pattern);
|
|
|
|
lstm_creator(lstm, subgraph.at(x), w, Weight, Bias, Hidden, Cell, fc_out,
|
|
|
|
nullptr);
|
|
|
|
// Remove unneeded nodes.
|
|
|
|
std::unordered_set<const Node*> marked_nodes({mul, lstm});
|
|
|
|
GraphSafeRemoveNodes(graph, marked_nodes);
|
|
|
|
}
|
|
|
|
|
|
|
|
++fusion_count;
|
|
|
|
};
|
|
|
|
|
|
|
|
gpd(graph, handler);
|
|
|
|
|
|
|
|
return fusion_count;
|
|
|
|
}
|
|
|
|
|
|
|
|
std::unique_ptr<ir::Graph> MulLstmFusePass::ApplyImpl(
|
|
|
|
std::unique_ptr<ir::Graph> graph) const {
|
|
|
|
FusePassBase::Init(name_scope_, graph.get());
|
|
|
|
|
|
|
|
int fusion_count = BuildFusion(graph.get(), name_scope_, param_scope(),
|
|
|
|
false /*with_fc_bias*/);
|
|
|
|
|
|
|
|
AddStatis(fusion_count);
|
|
|
|
return graph;
|
|
|
|
}
|
|
|
|
|
|
|
|
std::unique_ptr<ir::Graph> FCLstmFusePass::ApplyImpl(
|
|
|
|
std::unique_ptr<ir::Graph> graph) const {
|
|
|
|
FusePassBase::Init(name_scope_, graph.get());
|
|
|
|
|
|
|
|
int fusion_count = BuildFusion(graph.get(), name_scope_, param_scope(),
|
|
|
|
true /*with_fc_bias*/);
|
|
|
|
|
|
|
|
AddStatis(fusion_count);
|
|
|
|
return graph;
|
|
|
|
}
|
|
|
|
|
|
|
|
} // namespace ir
|
|
|
|
} // namespace framework
|
|
|
|
} // namespace paddle
|
|
|
|
|
|
|
|
REGISTER_PASS(mul_lstm_fuse_pass, paddle::framework::ir::MulLstmFusePass);
|
|
|
|
REGISTER_PASS(fc_lstm_fuse_pass, paddle::framework::ir::FCLstmFusePass);
|