You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
112 lines
4.0 KiB
112 lines
4.0 KiB
6 years ago
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
||
|
|
||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
you may not use this file except in compliance with the License.
|
||
|
You may obtain a copy of the License at
|
||
|
|
||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||
|
|
||
|
Unless required by applicable law or agreed to in writing, software
|
||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
See the License for the specific language governing permissions and
|
||
|
limitations under the License. */
|
||
|
|
||
|
#pragma once
|
||
|
|
||
|
#include <algorithm>
|
||
|
#include <memory>
|
||
|
#include <string>
|
||
|
#include <vector>
|
||
|
#include "paddle/fluid/framework/executor.h"
|
||
|
#include "paddle/fluid/framework/op_registry.h"
|
||
|
#include "paddle/fluid/framework/var_type.h"
|
||
|
|
||
|
namespace paddle {
|
||
|
namespace operators {
|
||
|
|
||
|
class ConditionalOp : public framework::OperatorBase {
|
||
|
public:
|
||
|
ConditionalOp(const std::string &type,
|
||
|
const framework::VariableNameMap &inputs,
|
||
|
const framework::VariableNameMap &outputs,
|
||
|
const framework::AttributeMap &attrs)
|
||
|
: OperatorBase(type, inputs, outputs, attrs) {}
|
||
|
|
||
|
protected:
|
||
|
std::vector<const framework::LoDTensor *> InputTensors(
|
||
|
const framework::Scope &scope, const std::string &in_name) const {
|
||
|
std::vector<const framework::LoDTensor *> retv;
|
||
|
auto xs = Inputs(in_name);
|
||
|
retv.resize(xs.size(), nullptr);
|
||
|
std::transform(
|
||
|
xs.begin(), xs.end(), retv.begin(),
|
||
|
[&scope](const std::string &var_name) -> const framework::LoDTensor * {
|
||
|
auto *var = scope.FindVar(var_name);
|
||
|
PADDLE_ENFORCE(var != nullptr, "Cannot find variable %s", var_name);
|
||
|
return &var->Get<framework::LoDTensor>();
|
||
|
});
|
||
|
return retv;
|
||
|
}
|
||
|
|
||
|
bool ScalarCondition(
|
||
|
const std::vector<const framework::LoDTensor *> &ips) const {
|
||
|
if (!(ips.size() == 1UL && ips[0]->IsInitialized())) {
|
||
|
PADDLE_THROW("should have one initialized input as condition");
|
||
|
}
|
||
|
|
||
|
PADDLE_ENFORCE(ips[0]->type() == framework::proto::VarType::BOOL &&
|
||
|
ips[0]->numel() == 1,
|
||
|
"condition input's data type should be bool, "
|
||
|
"numel should be 1, actual numel is %d",
|
||
|
ips[0]->numel());
|
||
|
bool res = false;
|
||
|
if (platform::is_gpu_place(ips[0]->place())) {
|
||
|
#ifdef PADDLE_WITH_CUDA
|
||
|
framework::LoDTensor cpu_tensor;
|
||
|
framework::TensorCopy(*ips[0], platform::CPUPlace(), &cpu_tensor);
|
||
|
platform::DeviceContextPool::Instance().Get(ips[0]->place())->Wait();
|
||
|
res = cpu_tensor.data<bool>()[0];
|
||
|
#endif
|
||
|
} else {
|
||
|
res = ips[0]->data<bool>()[0];
|
||
|
}
|
||
|
return res;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
class ConditionalBlockOpProtoMaker : public framework::OpProtoAndCheckerMaker {
|
||
|
public:
|
||
|
void Make() override {
|
||
|
AddInput("Cond",
|
||
|
"The conditional variable of this operator. If Cond is empty, the "
|
||
|
"whole sub-block will not be executed.")
|
||
|
.AsDuplicable();
|
||
|
AddInput("Input", "The input variables of the sub-block.").AsDuplicable();
|
||
|
AddOutput("Out", "The output variables of the sub-block.").AsDuplicable();
|
||
|
AddOutput("Scope",
|
||
|
"(std::vector<Scope*>) The step scope of conditional block. To "
|
||
|
"unify the conditional block, rnn and while op, the type of "
|
||
|
"scope is std::vector<Scope*>");
|
||
|
AddAttr<framework::BlockDesc *>(
|
||
|
"sub_block", "The step block of conditional block operator");
|
||
|
AddAttr<bool>("is_scalar_condition",
|
||
|
"The conditional variable (Cond) is used as scalar "
|
||
|
"condition.")
|
||
|
.SetDefault(false);
|
||
|
AddComment(R"DOC(Conditional block operator
|
||
|
|
||
|
If `is_scalar_condition` is True, the conditional variable (Cond) is a scalar,
|
||
|
run the operators in sub-block if Cond is True.
|
||
|
|
||
|
If `is_scalar_condition` is False, the conditional variable (Cond) is a vector or
|
||
|
tensor, run the operators in sub-block if all of input variables are not empty.
|
||
|
|
||
|
|
||
|
)DOC");
|
||
|
}
|
||
|
};
|
||
|
|
||
|
} // namespace operators
|
||
|
} // namespace paddle
|