You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/operators/hierarchical_sigmoid_op.cc

168 lines
6.6 KiB

/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
7 years ago
#include "paddle/fluid/operators/hierarchical_sigmoid_op.h"
#include <vector>
namespace paddle {
namespace operators {
/**
* Organize the classes into a binary tree. At each node, a sigmoid function
* is used to calculate the probability of belonging to the right branch.
* This idea is from "F. Morin, Y. Bengio (AISTATS 05):
* Hierarchical Probabilistic Neural Network Language Model."
*
* Here we uses a simple way of making the binary tree.
* Assuming the number of classes C = 6,
* The classes are organized as a binary tree in the following way:
*
* @code{.py}
* *-*-*- 2
* | | |- 3
* | |
* | |-*- 4
* | |- 5
* |
* |-*- 0
* |- 1
* @endcode
*
* where * indicates an internal node, and each leaf node represents a class.
* - Node 0 ... C-2 are internal nodes.
* - Node C-1 ... 2C-2 are leaf nodes.
* - Class c is represented by leaf node \f$c+C-1\f$.
*
* We assign an id for each node:
* - the id of root be 0.
* - the left child of a node i is 2*i+1.
* - the right child of a node i is 2*i+2.
*
* It's easy to see that:
* - the parent of node i is \f$\left\lfloor(i-1)/2\right\rfloor\f$.
* - the j-th level ancestor of node i is
* \f$\left\lfloor(i+1)/2^{j+1}\right\rfloor - 1\f$.
* - A node i is a left child of its parent if \f$(i-1)\%2==0\f$.
*
*/
class HierarchicalSigmoidOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null.");
7 years ago
PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) should not be null.");
7 years ago
PADDLE_ENFORCE(ctx->HasInput("W"), "Input(W) should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("Out"), "Output(Out) should not be null.");
7 years ago
PADDLE_ENFORCE(ctx->HasOutput("PreOut"),
"Output(PreOut) should not be null.");
7 years ago
const int64_t batch_size = ctx->GetInputDim("X")[0];
std::vector<int64_t> output_shape({batch_size, 1});
ctx->SetOutputDim("Out", framework::make_ddim(output_shape));
}
protected:
7 years ago
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
return framework::OpKernelType(
framework::ToDataType(ctx.Input<framework::Tensor>("X")->type()),
ctx.GetPlace());
}
};
7 years ago
template <typename AttrType>
class HierarchicalSigmoidOpMaker : public framework::OpProtoAndCheckerMaker {
public:
7 years ago
void Make() override {
AddInput("X",
"(Tensor, required) The input tensor with shape [N, D], "
"where N is the size of mini-batch, and D is the feature size.");
7 years ago
AddInput("W",
"(Tensor, required), The parameters of hierarchical "
"sigmoid operator, each of them is a 2-D tensor, the shape is"
"[num_classes - 1, D].");
7 years ago
AddInput("Label",
"(Tensor, required), The labels of training data. It's a"
"tensor with shape [N, 1].");
AddInput("Bias",
7 years ago
"(Tensor, optional), The bias is a tensor with shape"
"[1, num_classes - 1].");
7 years ago
AddOutput("Out",
"(Tensor, required) The output of hierarchical sigmoid operator."
"The shape is [N, 1].");
7 years ago
AddOutput("PreOut",
"(Tensor, required) A intermedia 2-D tensor with shape "
"[batch_size, code_length], where code_length represents the "
"maximum path length from root to leaf nodes.")
7 years ago
.AsIntermediate();
AddAttr<AttrType>("num_classes", "(int, required), The number of classes")
.SetDefault(2);
AddComment(R"DOC(
The hierarchical sigmoid operator organize the classes into a binary tree.
7 years ago
At each node, a sigmoid function is used to calculate the probability of
7 years ago
belonging to the right branch. This idea is from
"F. Morin, Y. Bengio (AISTATS 05):
Hierarchical Probabilistic Neural Network Language Model."
)DOC");
}
};
7 years ago
class HierarchicalSigmoidGradOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("W"), "Input(W) should not be null.");
7 years ago
PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) should not be null.");
7 years ago
PADDLE_ENFORCE(ctx->HasInput("PreOut"),
"Input(Preout) should not be null.");
PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("W")),
"Output(W@Grad should not be null.)");
PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")));
if (ctx->HasOutput(framework::GradVarName("Bias"))) {
ctx->SetOutputDim(framework::GradVarName("Bias"),
ctx->GetInputDim("Bias"));
}
ctx->SetOutputDim(framework::GradVarName("W"), ctx->GetInputDim("W"));
ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
return framework::OpKernelType(
framework::ToDataType(ctx.Input<framework::Tensor>("X")->type()),
ctx.GetPlace());
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
7 years ago
REGISTER_OPERATOR(hierarchical_sigmoid, ops::HierarchicalSigmoidOp,
ops::HierarchicalSigmoidOpMaker<int>,
paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(hierarchical_sigmoid_grad, ops::HierarchicalSigmoidGradOp);
7 years ago
REGISTER_OP_CPU_KERNEL(
hierarchical_sigmoid,
ops::HierarchicalSigmoidOpKernel<paddle::platform::CPUDeviceContext, float>,
ops::HierarchicalSigmoidOpKernel<paddle::platform::CPUDeviceContext,
double>);
REGISTER_OP_CPU_KERNEL(
hierarchical_sigmoid_grad,
ops::HierarchicalSigmoidGradOpKernel<paddle::platform::CPUDeviceContext,
float>,
ops::HierarchicalSigmoidGradOpKernel<paddle::platform::CPUDeviceContext,
double>);