You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
403 lines
15 KiB
403 lines
15 KiB
8 years ago
|
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.
|
||
|
|
||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
you may not use this file except in compliance with the License.
|
||
|
You may obtain a copy of the License at
|
||
|
|
||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||
|
|
||
|
Unless required by applicable law or agreed to in writing, software
|
||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
See the License for the specific language governing permissions and
|
||
|
limitations under the License. */
|
||
|
|
||
|
#include "MKLDNNConvLayer.h"
|
||
|
#include "paddle/math/MathUtils.h"
|
||
|
#include "paddle/utils/Logging.h"
|
||
|
|
||
|
using namespace mkldnn; // NOLINT
|
||
|
typedef memory::format format;
|
||
|
typedef convolution_forward conv_fwd;
|
||
|
typedef convolution_backward_weights conv_bwdWgt;
|
||
|
typedef convolution_backward_data conv_bwdData;
|
||
|
|
||
|
namespace paddle {
|
||
|
|
||
|
REGISTER_LAYER(mkldnn_conv, MKLDNNConvLayer);
|
||
|
|
||
|
bool MKLDNNConvLayer::init(const LayerMap& layerMap,
|
||
|
const ParameterMap& parameterMap) {
|
||
|
if (!MKLDNNLayer::init(layerMap, parameterMap)) {
|
||
|
return false;
|
||
|
}
|
||
|
CHECK_EQ(inputLayers_.size(), 1) << "Only support one input layer yet";
|
||
|
CHECK_EQ(inputLayers_.size(), parameters_.size());
|
||
|
CHECK(config_.shared_biases()) << "Only support shared biases yet";
|
||
|
|
||
|
oc_ = config_.num_filters();
|
||
|
const ConvConfig& conf = config_.inputs(0).conv_conf();
|
||
|
ic_ = conf.channels();
|
||
|
fw_ = conf.filter_size();
|
||
|
fh_ = conf.filter_size_y();
|
||
|
pw_ = conf.padding();
|
||
|
ph_ = conf.padding_y();
|
||
|
dw_ = conf.dilation();
|
||
|
dh_ = conf.dilation_y();
|
||
|
sw_ = conf.stride();
|
||
|
sh_ = conf.stride_y();
|
||
|
gp_ = conf.groups();
|
||
|
oh_ = conf.has_output_y() ? conf.output_y() : conf.output_x();
|
||
|
ow_ = conf.output_x();
|
||
|
ih_ = conf.has_img_size_y() ? conf.img_size_y() : conf.img_size();
|
||
|
iw_ = conf.img_size();
|
||
|
caffeMode_ = conf.caffe_mode();
|
||
|
CHECK(caffeMode_) << "Only support caffe mode yet";
|
||
|
CHECK(dh_ == 1 && dw_ == 1) << "Only support dilation 1 yet";
|
||
|
// check group setting
|
||
|
CHECK_EQ((oc_ / gp_) * gp_, oc_) << "group is indivisible for oc";
|
||
|
CHECK_EQ((ic_ / gp_) * gp_, ic_) << "group is indivisible for ic";
|
||
|
|
||
|
// create weight
|
||
|
size_t height = oc_ / gp_;
|
||
|
size_t width = ic_ * fh_ * fw_;
|
||
|
CHECK_EQ(parameters_[0]->getSize(), height * width);
|
||
|
weight_ =
|
||
|
std::unique_ptr<Weight>(new Weight(height, width, parameters_[0], 0));
|
||
|
|
||
|
// create biases
|
||
|
if (biasParameter_.get() != NULL) {
|
||
|
biases_ = std::unique_ptr<Weight>(new Weight(1, oc_, biasParameter_));
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
void MKLDNNConvLayer::convertWeightsFromPaddle() {
|
||
|
if (hasInitedWgt_) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
CHECK(wgtVal_) << "should have been initialized";
|
||
|
// the paddle weight format is oihw or goihw
|
||
|
auto targetDim = wgtVal_->getDims();
|
||
|
auto srcFmt = (gp_ == 1) ? memory::format::oihw : memory::format::goihw;
|
||
|
wgtVal_->reorderDataFrom(wgtVal_, srcFmt, targetDim);
|
||
|
hasInitedWgt_ = true;
|
||
|
}
|
||
|
|
||
|
void MKLDNNConvLayer::convertWeightsToPaddle() {
|
||
|
CHECK(wgtVal_) << "should have been initialized";
|
||
|
auto targetDim = wgtVal_->getDims();
|
||
|
auto dstFmt = (gp_ == 1) ? memory::format::oihw : memory::format::goihw;
|
||
|
wgtVal_->reorderDataTo(wgtVal_, dstFmt, targetDim);
|
||
|
}
|
||
|
|
||
|
void MKLDNNConvLayer::reshape(
|
||
|
int& bs, int& ic, int& ih, int& iw, int oc, int& oh, int& ow) {
|
||
|
reshapeInput(bs, ih, iw);
|
||
|
|
||
|
// cal output sizes
|
||
|
// oc can not be changed
|
||
|
int fh = (fh_ - 1) * dh_ + 1;
|
||
|
int fw = (fw_ - 1) * dw_ + 1;
|
||
|
oh = outputSize(ih, fh, ph_, sh_, caffeMode_);
|
||
|
ow = outputSize(iw, fw, pw_, sw_, caffeMode_);
|
||
|
|
||
|
reshapeOutput(oh, ow);
|
||
|
resizeOutput(bs, oc * oh * ow);
|
||
|
|
||
|
printSizeInfo();
|
||
|
}
|
||
|
|
||
|
void MKLDNNConvLayer::resetFwd(std::vector<primitive>& pipeline,
|
||
|
MKLDNNMatrixPtr& in,
|
||
|
MKLDNNMatrixPtr& wgt,
|
||
|
MKLDNNMatrixPtr& bias,
|
||
|
MKLDNNMatrixPtr& out) {
|
||
|
pipeline.clear();
|
||
|
bool hasBias = biases_ && biases_->getW();
|
||
|
biasVal_ = nullptr;
|
||
|
|
||
|
// dims for conv
|
||
|
memory::dims inDims = memory::dims{bs_, ic_, ih_, iw_};
|
||
|
memory::dims outDims = memory::dims{bs_, oc_, oh_, ow_};
|
||
|
memory::dims wgtDims =
|
||
|
(gp_ == 1) ? memory::dims{oc_, ic_, fh_, fw_}
|
||
|
: memory::dims{gp_, oc_ / gp_, ic_ / gp_, fh_, fw_};
|
||
|
memory::dims biasDims = memory::dims{oc_};
|
||
|
memory::dims strides = {sh_, sw_};
|
||
|
// note: mkldnn dilation start from 0
|
||
|
memory::dims dilations = {dh_ - 1, dw_ - 1};
|
||
|
memory::dims padding = {ph_, pw_};
|
||
|
memory::dims padR = getPaddingR();
|
||
|
|
||
|
// create forward handle
|
||
|
prop_kind pk =
|
||
|
passType_ == PASS_TEST ? prop_kind::forward : prop_kind::forward_training;
|
||
|
algorithm algo = algorithm::convolution_direct;
|
||
|
padding_kind padKind = padding_kind::zero;
|
||
|
conv_fwd::desc fwdDesc =
|
||
|
hasBias ? conv_fwd::desc(pk,
|
||
|
algo,
|
||
|
MKLDNNMatrix::createMemoryDesc(inDims),
|
||
|
MKLDNNMatrix::createMemoryDesc(wgtDims),
|
||
|
MKLDNNMatrix::createMemoryDesc(biasDims),
|
||
|
MKLDNNMatrix::createMemoryDesc(outDims),
|
||
|
strides,
|
||
|
dilations,
|
||
|
padding,
|
||
|
padR,
|
||
|
padKind)
|
||
|
: conv_fwd::desc(pk,
|
||
|
algo,
|
||
|
MKLDNNMatrix::createMemoryDesc(inDims),
|
||
|
MKLDNNMatrix::createMemoryDesc(wgtDims),
|
||
|
MKLDNNMatrix::createMemoryDesc(outDims),
|
||
|
strides,
|
||
|
dilations,
|
||
|
padding,
|
||
|
padR,
|
||
|
padKind);
|
||
|
fwdPD_.reset(new conv_fwd::primitive_desc(fwdDesc, engine_));
|
||
|
|
||
|
// create mkldnn matrix
|
||
|
const MatrixPtr& wgtVal = weight_->getW();
|
||
|
const MatrixPtr& inVal = inputLayers_[0]->getOutput().value;
|
||
|
const MatrixPtr& outVal = output_.value;
|
||
|
wgt = MKLDNNMatrix::create(wgtVal, fwdPD_->weights_primitive_desc());
|
||
|
in = MKLDNNMatrix::create(inVal, fwdPD_->src_primitive_desc());
|
||
|
out = MKLDNNMatrix::create(outVal, fwdPD_->dst_primitive_desc());
|
||
|
VLOG(MKLDNN_FMTS) << "Weight value format: " << wgtVal_->getFormat();
|
||
|
if (hasBias) {
|
||
|
const MatrixPtr& biasVal = biases_->getW();
|
||
|
bias = MKLDNNMatrix::create(biasVal, biasDims, format::x, engine_);
|
||
|
CHECK(bias->getPrimitiveDesc() == fwdPD_->bias_primitive_desc())
|
||
|
<< "bias primitive desc should always be equal";
|
||
|
}
|
||
|
|
||
|
// add reorder if input value do not match
|
||
|
if (inputIsOnlyMKLDNN()) {
|
||
|
MKLDNNMatrixPtr dnnIn = std::dynamic_pointer_cast<MKLDNNMatrix>(inVal);
|
||
|
CHECK(dnnIn) << "Input should be MKLDNNMatrix";
|
||
|
if (dnnIn->getPrimitiveDesc() != in->getPrimitiveDesc()) {
|
||
|
CHECK_EQ(dnnIn->getFormat(), format::nc);
|
||
|
CHECK(ih_ == 1 && iw_ == 1);
|
||
|
dnnIn = MKLDNNMatrix::create(inVal, inDims, format::nchw, engine_);
|
||
|
CHECK(dnnIn->getPrimitiveDesc() == in->getPrimitiveDesc());
|
||
|
}
|
||
|
in = dnnIn;
|
||
|
} else {
|
||
|
const MatrixPtr& cpuIn = getInputValue(0, CPU_DEVICE);
|
||
|
cpuInVal_ = MKLDNNMatrix::create(cpuIn, inDims, format::nchw, engine_);
|
||
|
if (cpuInVal_->getPrimitiveDesc() != in->getPrimitiveDesc()) {
|
||
|
// create new mkldnn matrix
|
||
|
in = MKLDNNMatrix::create(nullptr, fwdPD_->src_primitive_desc());
|
||
|
cvtInVal_ = MKLDNNMatrix::createReorder(cpuInVal_, in);
|
||
|
CHECK(cvtInVal_);
|
||
|
pipeline.push_back(*cvtInVal_);
|
||
|
} else {
|
||
|
in = cpuInVal_;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// add fwd handle
|
||
|
if (hasBias) {
|
||
|
fwd_.reset(new conv_fwd(*fwdPD_, *in, *wgt, *bias, *out));
|
||
|
} else {
|
||
|
fwd_.reset(new conv_fwd(*fwdPD_, *in, *wgt, *out));
|
||
|
}
|
||
|
pipeline.push_back(*fwd_);
|
||
|
|
||
|
// change original output value from cpu matrix to mkldnn matrix
|
||
|
output_.value = std::dynamic_pointer_cast<Matrix>(out);
|
||
|
// add reorder if output value has cpu device and pd do not match
|
||
|
if (!outputIsOnlyMKLDNN()) {
|
||
|
const MatrixPtr& cpuOut = getOutput(CPU_DEVICE).value;
|
||
|
cpuOutVal_ = MKLDNNMatrix::create(cpuOut, outDims, format::nchw, engine_);
|
||
|
if (cpuOutVal_->getPrimitiveDesc() != out->getPrimitiveDesc()) {
|
||
|
cvtOutVal_ = MKLDNNMatrix::createReorder(out, cpuOutVal_);
|
||
|
CHECK(cvtOutVal_);
|
||
|
pipeline.push_back(*cvtOutVal_);
|
||
|
} else {
|
||
|
// share data
|
||
|
cpuOut->setData(out->getData());
|
||
|
cpuOutVal_ = out;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
printValueFormatFlow();
|
||
|
}
|
||
|
|
||
|
void MKLDNNConvLayer::resetBwd(std::vector<primitive>& pipeline,
|
||
|
MKLDNNMatrixPtr& in,
|
||
|
MKLDNNMatrixPtr& wgt,
|
||
|
MKLDNNMatrixPtr& bias,
|
||
|
MKLDNNMatrixPtr& out) {
|
||
|
pipeline.clear();
|
||
|
bool hasBias = biases_ && biases_->getWGrad();
|
||
|
|
||
|
/// backward weight
|
||
|
CHECK(inVal_) << "Should have input value";
|
||
|
CHECK(outVal_) << "Should have output value";
|
||
|
CHECK(wgtVal_) << "Should have weight value";
|
||
|
memory::dims wgtDims =
|
||
|
(gp_ == 1) ? memory::dims{oc_, ic_, fh_, fw_}
|
||
|
: memory::dims{gp_, oc_ / gp_, ic_ / gp_, fh_, fw_};
|
||
|
memory::dims strides = {sh_, sw_};
|
||
|
memory::dims dilations = {dh_ - 1, dw_ - 1};
|
||
|
memory::dims padding = {ph_, pw_};
|
||
|
memory::dims padR = getPaddingR();
|
||
|
|
||
|
// create backward handle
|
||
|
algorithm algo = algorithm::convolution_direct;
|
||
|
padding_kind padKind = padding_kind::zero;
|
||
|
auto bwdWgtDesc =
|
||
|
hasBias ? conv_bwdWgt::desc(algo,
|
||
|
inVal_->getMemoryDesc(),
|
||
|
MKLDNNMatrix::createMemoryDesc(wgtDims),
|
||
|
biasVal_->getMemoryDesc(),
|
||
|
outVal_->getMemoryDesc(),
|
||
|
strides,
|
||
|
padding,
|
||
|
padR,
|
||
|
padKind)
|
||
|
: conv_bwdWgt::desc(algo,
|
||
|
inVal_->getMemoryDesc(),
|
||
|
MKLDNNMatrix::createMemoryDesc(wgtDims),
|
||
|
outVal_->getMemoryDesc(),
|
||
|
strides,
|
||
|
padding,
|
||
|
padR,
|
||
|
padKind);
|
||
|
|
||
|
auto bwdWgtPD = conv_bwdWgt::primitive_desc(bwdWgtDesc, engine_, *fwdPD_);
|
||
|
CHECK(bwdWgtPD.src_primitive_desc() == inVal_->getPrimitiveDesc())
|
||
|
<< "primitive desc of in value should equal";
|
||
|
CHECK(bwdWgtPD.diff_dst_primitive_desc() == outVal_->getPrimitiveDesc())
|
||
|
<< "primitive desc of out grad should equal the out value";
|
||
|
CHECK(bwdWgtPD.diff_weights_primitive_desc() == wgtVal_->getPrimitiveDesc())
|
||
|
<< "primitive desc of weight grad should equal the weight value";
|
||
|
|
||
|
// create mkldnn matrix
|
||
|
const MatrixPtr& wgtGrad = weight_->getWGrad();
|
||
|
const MatrixPtr& outGrad = output_.grad;
|
||
|
wgt = MKLDNNMatrix::create(wgtGrad, bwdWgtPD.diff_weights_primitive_desc());
|
||
|
out = MKLDNNMatrix::create(outGrad, bwdWgtPD.diff_dst_primitive_desc());
|
||
|
CHECK(wgt->getPrimitiveDesc() == wgtVal_->getPrimitiveDesc())
|
||
|
<< "primitive desc of weight grad and value should be equal";
|
||
|
CHECK(out->getPrimitiveDesc() == outVal_->getPrimitiveDesc())
|
||
|
<< "primitive desc of out grad and value should be equal";
|
||
|
VLOG(MKLDNN_FMTS) << "Backward weight, weight grad format: "
|
||
|
<< wgt->getFormat();
|
||
|
if (hasBias) {
|
||
|
const MatrixPtr& biasGrad = biases_->getWGrad();
|
||
|
bias = MKLDNNMatrix::create(biasGrad, bwdWgtPD.diff_bias_primitive_desc());
|
||
|
CHECK(bias->getPrimitiveDesc() == biasVal_->getPrimitiveDesc())
|
||
|
<< "primitive desc of bias grad should equal the bias value";
|
||
|
}
|
||
|
|
||
|
// TODO(TJ): merge outgrad
|
||
|
// add reorder if has user output grad
|
||
|
if (!outputIsOnlyMKLDNN()) {
|
||
|
const MatrixPtr& cpuOut = getOutput(CPU_DEVICE).grad;
|
||
|
memory::dims outDims = memory::dims{bs_, oc_, oh_, ow_};
|
||
|
// same PrimitiveDesc with cpuInVal_
|
||
|
CHECK(cpuOutVal_);
|
||
|
cpuOutGrad_ = MKLDNNMatrix::create(cpuOut, cpuOutVal_->getPrimitiveDesc());
|
||
|
if (cpuOutGrad_->getPrimitiveDesc() == out->getPrimitiveDesc()) {
|
||
|
outGrad->setData(cpuOut->getData());
|
||
|
out = cpuOutGrad_;
|
||
|
} else {
|
||
|
cvtOutGrad_ = MKLDNNMatrix::createReorder(cpuOutGrad_, out);
|
||
|
CHECK(cvtOutGrad_);
|
||
|
pipeline.push_back(*cvtOutGrad_);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// add bwdWgt handle
|
||
|
if (hasBias) {
|
||
|
bwdWgt_.reset(new conv_bwdWgt(bwdWgtPD, *inVal_, *out, *wgt, *bias));
|
||
|
} else {
|
||
|
bwdWgt_.reset(new conv_bwdWgt(bwdWgtPD, *inVal_, *out, *wgt));
|
||
|
}
|
||
|
pipeline.push_back(*bwdWgt_);
|
||
|
|
||
|
/// backward data
|
||
|
const MatrixPtr& inGrad = inputLayers_[0]->getOutput().grad;
|
||
|
if (inGrad == nullptr) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
auto bwdDataDesc = conv_bwdData::desc(algo,
|
||
|
inVal_->getMemoryDesc(),
|
||
|
MKLDNNMatrix::createMemoryDesc(wgtDims),
|
||
|
out->getMemoryDesc(),
|
||
|
strides,
|
||
|
padding,
|
||
|
padR,
|
||
|
padKind);
|
||
|
auto bwdDataPD = conv_bwdData::primitive_desc(bwdDataDesc, engine_, *fwdPD_);
|
||
|
CHECK(bwdDataPD.diff_src_primitive_desc() == inVal_->getPrimitiveDesc())
|
||
|
<< "primitive desc of in grad should equal the in value";
|
||
|
CHECK(bwdDataPD.diff_dst_primitive_desc() == out->getPrimitiveDesc())
|
||
|
<< "primitive desc of out grad should equal";
|
||
|
|
||
|
// create mkldnn matrix inGrad_ and reorder if necessary
|
||
|
// TODO(TJ): use outputMaps_ ways to get the inGrad_ when merge outgrad done
|
||
|
in = MKLDNNMatrix::create(inGrad, bwdDataPD.diff_src_primitive_desc());
|
||
|
cvtInGrad_ = nullptr;
|
||
|
if (!inputIsOnlyMKLDNN()) {
|
||
|
const MatrixPtr& cpuIn = getInputGrad(0, CPU_DEVICE);
|
||
|
// same PrimitiveDesc with cpuInVal_
|
||
|
CHECK(cpuInVal_);
|
||
|
cpuInGrad_ = MKLDNNMatrix::create(cpuIn, cpuInVal_->getPrimitiveDesc());
|
||
|
if (cpuInGrad_->getPrimitiveDesc() != in->getPrimitiveDesc()) {
|
||
|
const MatrixPtr& dnnIn = getInputGrad(0, MKLDNN_DEVICE);
|
||
|
in = MKLDNNMatrix::create(dnnIn, in->getPrimitiveDesc());
|
||
|
cvtInGrad_ = MKLDNNMatrix::createReorder(in, cpuInGrad_);
|
||
|
CHECK(cvtInGrad_);
|
||
|
} else {
|
||
|
in = cpuInGrad_;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// create new weight value for backward data, and reorder if necessary
|
||
|
// since the primitive_desc would be different with wgtVal_
|
||
|
if (bwdDataPD.weights_primitive_desc() != wgtVal_->getPrimitiveDesc()) {
|
||
|
wgtValBwdData_ =
|
||
|
MKLDNNMatrix::create(nullptr, bwdDataPD.weights_primitive_desc());
|
||
|
cvtWgtVal_ = MKLDNNMatrix::createReorder(wgtVal_, wgtValBwdData_);
|
||
|
CHECK(cvtWgtVal_);
|
||
|
pipeline.push_back(*cvtWgtVal_);
|
||
|
} else {
|
||
|
wgtValBwdData_ = wgtVal_;
|
||
|
}
|
||
|
VLOG(MKLDNN_FMTS) << "Backward data, weight value format: "
|
||
|
<< wgtValBwdData_->getFormat();
|
||
|
|
||
|
// add bwdData handle
|
||
|
CHECK(wgtValBwdData_) << "Should have weight memory";
|
||
|
bwdData_.reset(new conv_bwdData(bwdDataPD, *out, *wgtValBwdData_, *in));
|
||
|
pipeline.push_back(*bwdData_);
|
||
|
|
||
|
// add ingrad reorder after bwdData
|
||
|
if (cvtInGrad_) {
|
||
|
pipeline.push_back(*cvtInGrad_);
|
||
|
}
|
||
|
|
||
|
printGradFormatFlow();
|
||
|
}
|
||
|
|
||
|
void MKLDNNConvLayer::updateInputData() {
|
||
|
cpuInVal_->setData(getInputValue(0, CPU_DEVICE)->getData());
|
||
|
}
|
||
|
|
||
|
void MKLDNNConvLayer::updateWeights(const UpdateCallback& callback) {
|
||
|
weight_->getParameterPtr()->incUpdate(callback);
|
||
|
if (biases_ && biases_->getWGrad()) {
|
||
|
biases_->getParameterPtr()->incUpdate(callback);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
} // namespace paddle
|