You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
72 lines
2.6 KiB
72 lines
2.6 KiB
6 years ago
|
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||
|
|
||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
you may not use this file except in compliance with the License.
|
||
|
You may obtain a copy of the License at
|
||
|
|
||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||
|
|
||
|
Unless required by applicable law or agreed to in writing, software
|
||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
See the License for the specific language governing permissions and
|
||
|
limitations under the License. */
|
||
|
|
||
|
#include "paddle/fluid/operators/detection/yolo_box_op.h"
|
||
|
|
||
|
namespace paddle {
|
||
|
namespace operators {
|
||
|
|
||
|
using Tensor = framework::Tensor;
|
||
|
|
||
|
template <typename T>
|
||
|
static __global__ void GenDensityPriorBox(
|
||
|
const int height, const int width, const int im_height, const int im_width,
|
||
|
const T offset, const T step_width, const T step_height,
|
||
|
const int num_priors, const T* ratios_shift, bool is_clip, const T var_xmin,
|
||
|
const T var_ymin, const T var_xmax, const T var_ymax, T* out, T* var) {
|
||
|
int gidx = blockIdx.x * blockDim.x + threadIdx.x;
|
||
|
int gidy = blockIdx.y * blockDim.y + threadIdx.y;
|
||
|
int step_x = blockDim.x * gridDim.x;
|
||
|
int step_y = blockDim.y * gridDim.y;
|
||
|
}
|
||
|
|
||
|
template <typename T>
|
||
|
class YoloBoxOpCUDAKernel : public framework::OpKernel<T> {
|
||
|
public:
|
||
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
||
|
auto* input = ctx.Input<Tensor>("Input");
|
||
|
auto* boxes = ctx.Output<Tensor>("Boxes");
|
||
|
auto* scores = ctx.Output<Tensor>("Scores");
|
||
|
|
||
|
auto anchors = ctx.Attr<std::vector<int>>("anchors");
|
||
|
int class_num = ctx.Attr<int>("class_num");
|
||
|
float conf_thresh = ctx.Attr<float>("conf_thresh");
|
||
|
int downsample_ratio = ctx.Attr<int>("downsample_ratio");
|
||
|
|
||
|
const int n = input->dims()[0];
|
||
|
const int h = input->dims()[2];
|
||
|
const int w = input->dims()[3];
|
||
|
const int box_num = boxes->dims()[1];
|
||
|
const int an_num = anchors.size() / 2;
|
||
|
int input_size = downsample_ratio * h;
|
||
|
|
||
|
const int stride = h * w;
|
||
|
const int an_stride = (class_num + 5) * stride;
|
||
|
|
||
|
const T* input_data = input->data<T>();
|
||
|
T* boxes_data = boxes->mutable_data<T>({n}, ctx.GetPlace());
|
||
|
memset(loss_data, 0, boxes->numel() * sizeof(T));
|
||
|
T* scores_data = scores->mutable_data<T>({n}, ctx.GetPlace());
|
||
|
memset(scores_data, 0, scores->numel() * sizeof(T));
|
||
|
}
|
||
|
}; // namespace operators
|
||
|
|
||
|
} // namespace operators
|
||
|
} // namespace paddle
|
||
|
|
||
|
namespace ops = paddle::operators;
|
||
|
REGISTER_OP_CUDA_KERNEL(density_prior_box,
|
||
|
ops::DensityPriorBoxOpCUDAKernel<float>,
|
||
|
ops::DensityPriorBoxOpCUDAKernel<double>);
|