You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/trainer_config_helpers/activations.py

190 lines
4.2 KiB

# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Paddle Supported Activations.
Each activation inherit BaseActivation, which has two attributes.
- name: activation name in paddle config.
- support_hppl: True if supported by hppl. lstm layer can only use activations
supported by hppl (the name hppl will be revised later).
"""
__all__ = ["TanhActivation", "SigmoidActivation",
"SoftmaxActivation", "IdentityActivation", "LinearActivation",
'SequenceSoftmaxActivation',
"ReluActivation", "BReluActivation", "SoftReluActivation", "STanhActivation",
"AbsActivation", "SquareActivation", "BaseActivation"]
class BaseActivation(object):
"""
A mark for activation class.
"""
def __init__(self, name, support_hppl):
self.name = name
self.support_hppl = support_hppl
class TanhActivation(BaseActivation):
"""
Tanh activation.
.. math::
f(z)=tanh(z)=\\frac{e^z-e^{-z}}{e^z+e^{-z}}
"""
def __init__(self): BaseActivation.__init__(self, 'tanh', True)
class SigmoidActivation(BaseActivation):
"""
Sigmoid activation.
.. math::
f(z) = \\frac{1}{1+exp(-z)}
"""
def __init__(self): BaseActivation.__init__(self, 'sigmoid', True)
class SoftmaxActivation(BaseActivation):
"""
Softmax activation for simple input
.. math::
P(y=j|x) = \\frac{e^{x_j}} {\\sum^K_{k=1} e^{x_j} }
"""
def __init__(self):
BaseActivation.__init__(self, 'softmax', False)
class SequenceSoftmaxActivation(BaseActivation):
"""
Softmax activation for one sequence. The dimension of input feature must be
1 and a sequence.
.. code:: python
result = softmax(for each_feature_vector[0] in input_feature)
for i, each_time_step_output in enumerate(output):
each_time_step_output = result[i]
"""
def __init__(self):
BaseActivation.__init__(self, 'sequence_softmax', False)
class IdentityActivation(BaseActivation):
"""
Identity Activation.
Just do nothing for output both forward/backward.
"""
def __init__(self): BaseActivation.__init__(self, '', False)
LinearActivation = IdentityActivation
class ReluActivation(BaseActivation):
"""
Relu activation.
forward. :math:`y = max(0, z)`
derivative:
.. math::
1 &\\quad if z > 0 \\\\
0 &\\quad\\mathrm{otherwize}
"""
def __init__(self): BaseActivation.__init__(self, 'relu', True)
class BReluActivation(BaseActivation):
"""
BRelu Activation.
forward. :math:`y = min(24, max(0, z))`
derivative:
.. math::
1 &\\quad if 0 < z < 24 \\\\
0 &\\quad \\mathrm{otherwise}
"""
def __init__(self): BaseActivation.__init__(self, 'brelu', False)
class SoftReluActivation(BaseActivation):
"""
SoftRelu Activation.
"""
def __init__(self): BaseActivation.__init__(self, 'softrelu', False)
class STanhActivation(BaseActivation):
"""
Scaled Tanh Activation.
.. math::
f(z) = 1.7159 * tanh(2/3*z)
"""
def __init__(self): BaseActivation.__init__(self, 'stanh', False)
class AbsActivation(BaseActivation):
"""
Abs Activation.
Forward: :math:`f(z) = abs(z)`
Derivative:
.. math::
1 &\\quad if \\quad z > 0 \\\\
-1 &\\quad if \\quad z < 0 \\\\
0 &\\quad if \\quad z = 0
"""
def __init__(self): BaseActivation.__init__(self, 'abs', False)
class SquareActivation(BaseActivation):
"""
Square Activation.
.. math::
f(z) = z^2.
"""
def __init__(self): BaseActivation.__init__(self, 'square', False)