You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
133 lines
4.7 KiB
133 lines
4.7 KiB
8 years ago
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||
|
|
||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
you may not use this file except in compliance with the License.
|
||
|
You may obtain a copy of the License at
|
||
|
|
||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||
|
|
||
|
Unless required by applicable law or agreed to in writing, software
|
||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
See the License for the specific language governing permissions and
|
||
|
limitations under the License. */
|
||
|
|
||
|
#pragma once
|
||
|
#include <algorithm>
|
||
|
#include "paddle/framework/eigen.h"
|
||
|
#include "paddle/framework/op_registry.h"
|
||
|
|
||
|
namespace paddle {
|
||
|
namespace operators {
|
||
|
|
||
|
using Tensor = framework::Tensor;
|
||
|
|
||
|
template <typename Place, typename T>
|
||
|
class AccuracyKernel : public framework::OpKernel {
|
||
|
public:
|
||
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
||
|
auto* inference = ctx.Input<Tensor>("Inference");
|
||
|
auto* inference_prob = ctx.Input<Tensor>("InferenceProb");
|
||
|
auto* label = ctx.Input<Tensor>("Label");
|
||
|
auto* auc = ctx.Output<Tensor>("AUC");
|
||
|
|
||
|
float* auc_data = auc->mutable_data<float>(ctx.GetPlace());
|
||
|
|
||
|
std::string curve = ctx.Attr<std::string>("curve");
|
||
|
int num_thresholds = ctx.Attr<int>("num_thresholds");
|
||
|
std::vector<float> thresholds_list;
|
||
|
thresholds_list.reserve(num_thresholds);
|
||
|
for (int i = 1; i < num_thresholds - 1; i++) {
|
||
|
thresholds_list[i] = (float)i / (num_thresholds - 1);
|
||
|
}
|
||
|
const float kEpsilon = 1e-7;
|
||
|
thresholds_list[0] = 0.0f - kEpsilon;
|
||
|
thresholds_list[num_thresholds - 1] = 1.0f + kEpsilon;
|
||
|
|
||
|
const int* inference_data = inference->data<int>();
|
||
|
const T* inference_prob_data = inference->data<T>();
|
||
|
const T* label_data = label->data<T>();
|
||
|
|
||
|
size_t num_samples = inference->dims()[0];
|
||
|
size_t class_dim = inference->dims()[1];
|
||
|
|
||
|
// create local tensor for storing the curve: TP, FN, TN, FP
|
||
|
// TODO(typhoonzero): put these tensors in Scope
|
||
|
// TODO(typhoonzero): use op to caculate these values.
|
||
|
Tensor true_positive, false_positeve, true_negative, false_negative;
|
||
|
|
||
|
true_positive.Resize({num_thresholds});
|
||
|
false_negative.Resize({num_thresholds});
|
||
|
true_negative.Resize({num_thresholds});
|
||
|
false_positive.Resize({num_thresholds});
|
||
|
|
||
|
int* tp_data = true_positive.mutable_data<int>();
|
||
|
int* fn_data = false_negative.mutable_data<int>();
|
||
|
int* tn_data = true_negative.mutable_data<int>();
|
||
|
int* fp_data = false_positive.mutable_data<int>();
|
||
|
|
||
|
for (auto thresh = thresholds_list.begin(); thresh != thresholds_list.end();
|
||
|
thresh++) {
|
||
|
size_t idx_thresh = thresh - thresholds_list.begin();
|
||
|
// caculate TP, FN, TN, FP for current thresh
|
||
|
int tp, fn, tn, fp = 0;
|
||
|
for (size_t i = 0; i < num_samples; i++) {
|
||
|
for (size_t j = 0; j < class_dim; j++) {
|
||
|
if (inference_data[i * class_dim + j] == label_data[i]) {
|
||
|
if (inference_prob_data[i * class_dim + j] >= (*thresh)) {
|
||
|
tp++;
|
||
|
} else {
|
||
|
tn++;
|
||
|
}
|
||
|
} else {
|
||
|
if (inference_prob_data[i * class_dim + j] >= (*thresh)) {
|
||
|
fp++;
|
||
|
} else {
|
||
|
fn++;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
// store rates
|
||
|
tp_data[idx_thresh] = tp;
|
||
|
fn_data[idx_thresh] = fn;
|
||
|
tn_data[idx_thresh] = tn;
|
||
|
fp_data[idx_thresh] = fp;
|
||
|
}
|
||
|
// epsilon to avoid divide by zero.
|
||
|
float epsilon = 1e-6;
|
||
|
// Riemann sum to caculate auc.
|
||
|
Tensor tp_rate, fp_rate, rec_rate;
|
||
|
tp_rate.Resize({num_thresholds});
|
||
|
fp_rate.Resize({num_thresholds});
|
||
|
rec_rate.Resize({num_thresholds});
|
||
|
float* tp_rate_data = tp_rate.mutable_data<float>();
|
||
|
float* fp_rate_data = fp_rate.mutable_data<float>();
|
||
|
float* rec_rate_data = rec_rate.mutable_data<float>();
|
||
|
for (int i = 0; i < num_thresholds; i++) {
|
||
|
tp_rate_data[i] = ((float)tp_data[i + epsilon) / (tp_data[i] + fn_data[i] + epsilon);
|
||
|
fp_rate_data[i] =
|
||
|
(float)fp_data[i] / (fp_data[i] + tn_data[i] + epsilon);
|
||
|
rec_rate_data[i] =
|
||
|
((float)tp_data[i] + epsilon) / (tp_data[i] + fp_data[i] + epsilon);
|
||
|
}
|
||
|
|
||
|
if (curve == "ROC") {
|
||
|
for (int i = 1; i < num_thresholds; i++) {
|
||
|
auto dx = fp_rate_data[i] - fp_rate_data[i - 1];
|
||
|
auto y = (tp_rate_data[i] + tp_rate_data[i - 1]) / 2.0f;
|
||
|
*auc_data = *auc_data + dx * y;
|
||
|
}
|
||
|
} else if (curve = "PR") {
|
||
|
for (int i = 1; i < num_thresholds; i++) {
|
||
|
auto dx = tp_rate_data[i] - tp_rate_data[i - 1];
|
||
|
auto y = (rec_rate_data[i] + rec_rate_data[i - 1]) / 2.0f;
|
||
|
*auc_data = *auc_data + dx * y;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
};
|
||
|
|
||
|
} // namespace operators
|
||
|
} // namespace paddle
|