You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/imperative/layer.cc

182 lines
5.6 KiB

// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/imperative/layer.h"
#include <deque>
#include <limits>
#include <map>
#include <random>
#include <utility>
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/string/printf.h"
namespace paddle {
namespace imperative {
using framework::Variable;
void AddTo(Variable* src, Variable* dst) {
framework::LoDTensor* dst_tensor = dst->GetMutable<framework::LoDTensor>();
framework::LoDTensor* src_tensor = src->GetMutable<framework::LoDTensor>();
PADDLE_ENFORCE(dst_tensor->numel() == src_tensor->numel(), "%lld vs %lld",
dst_tensor->numel(), src_tensor->numel());
float* dst_data = dst_tensor->mutable_data<float>(platform::CPUPlace());
const float* src_data = src_tensor->data<float>();
for (size_t i = 0; i < src_tensor->numel(); ++i) {
dst_data[i] += src_data[i];
}
}
class Autograd {
public:
Autograd() {}
void RunBackward(VarBase* var) {
PADDLE_ENFORCE(var->pre_op_->op_desc_);
PADDLE_ENFORCE(
var->grads_ ==
var->pre_op_->output_vars_[var->pre_op_out_name_][var->pre_op_out_idx_]
->grads_);
std::deque<OpBase*> ready;
ready.push_back(var->pre_op_);
std::map<OpBase*, int> dep_counts = ComputeDepCounts(var->pre_op_);
while (!ready.empty()) {
OpBase* ready_op = ready.front();
ready.pop_front();
std::map<std::string, std::vector<VarBase*>> input_grads =
ready_op->ApplyGrad();
for (auto it : input_grads) {
const std::vector<VarBase*>& ingrads = it.second;
for (size_t i = 0; i < ingrads.size(); ++i) {
if (!ingrads[i]) continue;
OpBase* pre_op = (*ready_op->pre_ops_)[it.first][i];
if (!pre_op) continue;
dep_counts[pre_op] -= 1;
PADDLE_ENFORCE(dep_counts[pre_op] >= 0);
bool pre_op_ready = dep_counts[pre_op] == 0;
if (pre_op_ready) {
ready.push_back(pre_op);
}
}
}
}
}
private:
std::map<OpBase*, int> ComputeDepCounts(OpBase* op) {
std::map<OpBase*, int> ret;
std::deque<OpBase*> queue;
queue.push_back(op);
std::unordered_set<OpBase*> visited;
visited.insert(op);
while (!queue.empty()) {
OpBase* candidate = queue.front();
queue.pop_front();
for (auto it : *(candidate->pre_ops_)) {
for (OpBase* pre_op : it.second) {
if (!pre_op) continue;
if (visited.find(pre_op) == visited.end()) {
visited.insert(pre_op);
queue.push_back(pre_op);
}
ret[pre_op] += 1;
}
}
}
return ret;
}
};
void CreateVariable(const std::string& name, const framework::DDim& dim,
float val, bool random_name, framework::Variable* var) {
if (var->IsInitialized()) return;
std::string varname = name;
if (random_name) {
std::mt19937 rng;
rng.seed(std::random_device()());
std::uniform_int_distribution<std::mt19937::result_type> dist6(
1, std::numeric_limits<int>::max());
int id = dist6(rng);
varname = string::Sprintf("%s@%d", varname, id);
}
VLOG(3) << "creating var " << varname;
framework::LoDTensor* tensor = var->GetMutable<framework::LoDTensor>();
float* data = tensor->mutable_data<float>(dim, platform::CPUPlace());
std::fill(data, data + tensor->numel(), val);
}
framework::LoDTensor& VarBase::Grad() {
VLOG(3) << "get var grad " << var_desc_->Name();
return *grads_->GetMutable<framework::LoDTensor>();
}
std::map<std::string, std::vector<VarBase*>> OpBase::ApplyGrad() {
if (!grad_op_desc_) {
VLOG(3) << "op with no grad: " << op_desc_->Type();
return {};
}
VLOG(3) << "op grad " << grad_op_desc_->Type();
std::map<std::string, std::vector<framework::Variable*>> grad_outputs;
for (auto it : grad_output_vars_) {
auto& outputs = grad_outputs[it.first];
for (size_t i = 0; i < it.second.size(); ++i) {
outputs.push_back(new framework::Variable());
outputs.back()->GetMutable<framework::LoDTensor>();
}
}
framework::RuntimeContext ctx(grad_input_vars_, grad_outputs);
// No need to do static infer shape here.
// grad_op_desc_->InferShape(*block_);
grad_op_desc_->InferVarType(block_);
std::unique_ptr<framework::OperatorBase> opbase =
framework::OpRegistry::CreateOp(*grad_op_desc_);
opbase->Run(ctx, platform::CPUPlace());
for (auto it : grad_output_vars_) {
auto& outputs = grad_outputs[it.first];
auto& origin_outputs = it.second;
for (size_t i = 0; i < outputs.size(); ++i) {
framework::Variable* orig_grad = origin_outputs[i];
AddTo(outputs[i], orig_grad);
}
}
return input_vars_;
}
void VarBase::RunBackward() {
auto grads_t = grads_->GetMutable<framework::LoDTensor>();
float* data = grads_t->mutable_data<float>(platform::CPUPlace());
std::fill(data, data + grads_t->numel(), 1.0);
if (!pre_op_) return;
Autograd().RunBackward(this);
}
} // namespace imperative
} // namespace paddle