You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/operators/conv_op.cc

253 lines
11 KiB

/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/conv_op.h"
namespace paddle {
namespace operators {
void ConvOp::InferShape(framework::InferShapeContext* ctx) const {
PADDLE_ENFORCE(ctx->HasInput("Input"),
"Input(Input) of ConvOp should not be null.");
PADDLE_ENFORCE(ctx->HasInput("Filter"),
"Input(Filter) of ConvOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("Output"),
"Output(Output) of ConvOp should not be null.");
auto in_dims = ctx->GetInputDim("Input");
auto filter_dims = ctx->GetInputDim("Filter");
std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
int groups = ctx->Attrs().Get<int>("groups");
std::vector<int> dilations = ctx->Attrs().Get<std::vector<int>>("dilations");
PADDLE_ENFORCE(in_dims.size() == 4 || in_dims.size() == 5,
"Conv intput should be 4-D or 5-D tensor.");
PADDLE_ENFORCE_EQ(
in_dims.size(), filter_dims.size(),
"Conv input dimension and filter dimension should be the same.");
PADDLE_ENFORCE(
in_dims.size() - strides.size() == 2U,
"Conv input dimension and strides dimension should be consistent.");
PADDLE_ENFORCE_EQ(
paddings.size(), strides.size(),
"Conv paddings dimension and Conv strides dimension should be the same.");
int input_channels = in_dims[1];
PADDLE_ENFORCE_EQ(input_channels, filter_dims[1] * groups,
"The number of input channels should be equal to filter "
"channels * groups.");
int output_channels = filter_dims[0];
PADDLE_ENFORCE_EQ(
output_channels % groups, 0,
"The number of output channels should be divided by groups.");
std::vector<int64_t> output_shape({in_dims[0], filter_dims[0]});
7 years ago
for (size_t i = 0; i < strides.size(); ++i) {
7 years ago
PADDLE_ENFORCE(in_dims[i + 2] + 2 * paddings[i] -
(dilations[i] * (filter_dims[i + 2] - 1) + 1) >
0,
"Due to the settings of paddings, filter_dims and "
"dilations, the output size is less than 0, please check "
"again.");
output_shape.push_back(OutputSize(in_dims[i + 2], filter_dims[i + 2],
7 years ago
dilations[i], paddings[i], strides[i]));
}
ctx->SetOutputDim("Output", framework::make_ddim(output_shape));
}
Conv2DOpMaker::Conv2DOpMaker(OpProto* proto, OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput(
"Input",
7 years ago
"(Tensor) The input tensor of convolution operator. "
"The format of input tensor is NCHW, where N is batch size, C is the "
"number of channels, H is the height of the feature, "
"and W is the width of the feature.");
AddInput("Filter",
7 years ago
"(Tensor) The filter tensor of convolution operator. "
"The format of the filter tensor is MCHW, where M is the number of "
"output image channels, C is the number of input image channels, "
7 years ago
"H is the height of the filter, and W is the width of the filter. "
"If the groups attribute is greater than 1, C equals the number of "
"input image channels divided by the groups.");
AddOutput("Output",
7 years ago
"(Tensor) The output tensor of convolution operator. "
"The format of output tensor is also NCHW.");
7 years ago
AddAttr<std::vector<int>>("strides",
"(vector<int> default:{1, 1}), the "
"strides(h_stride, w_stride) of "
"convolution operator.")
.SetDefault({1, 1});
7 years ago
AddAttr<std::vector<int>>("paddings",
"(vector<int> default:{0, 0}), the "
"paddings(h_pad, w_pad) of "
"convolution operator.")
.SetDefault({0, 0});
AddAttr<int>(
"groups",
"(int default:1), the groups number of the convolution operator. "
7 years ago
"According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
"when group=2, the first half of the filters is only connected to the "
"first half of the input channels, while the second half of the filters "
"is only connected to the second half of the input channels.")
.SetDefault(1);
AddAttr<std::vector<int>>("dilations",
7 years ago
"(vector<int> default:{1, 1}), the "
"dilations(h_dilation, w_dilation) of "
"convolution operator.")
7 years ago
.SetDefault({1, 1});
AddComment(R"DOC(
7 years ago
Convolution Operator.
The convolution operation calculates the output based on the input, filter
and strides, paddings, dilations, groups parameters. The size of each dimension of the
parameters is checked in the infer-shape.
Input(Input) and Output(Output) are in NCHW format. Where N is batch
7 years ago
size, C is the number of channels, H is the height of the feature, and W is
the width of the feature.
Filters(Input) is MCHW format. Where M is the number of output image channels, C is
the number of input image channels, H is the height of the filter, and W
is the width of the filter.
Parameters(strides, paddings, dilations) are two elements. These two elements represent
height and width, respectively.
The input(X) size and output(Out) size may be different.
Example:
Input:
Input shape: $(N, C_{in}, H_{in}, W_{in})$
Filter shape: $(C_{out}, C_{in}, H_f, W_f)$
Output:
Output shape: $(N, C_{out}, H_{out}, W_{out})$
Where
$$
H_{out}= \frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]}+ 1 \\
W_{out}= \frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]}+ 1
$$
)DOC");
}
Conv3DOpMaker::Conv3DOpMaker(OpProto* proto, OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput(
"Input",
7 years ago
"(Tensor) The input tensor of convolution operator. "
"The format of input tensor is NCDHW. Where N is batch size, C is the "
7 years ago
"number of channels, D is the depth of the feature, H is the height of "
"the feature, "
"and W is the width of the feature.");
AddInput("Filter",
7 years ago
"(Tensor) The filter tensor of convolution operator. "
"The format of the filter tensor is MCDHW, where M is the number of "
"output image channels, C is the number of input image channels, "
7 years ago
"D is the depth of the filter, H is the height of the filter, and W "
"is the width of the filter."
"If the groups attribute is greater than 1, C equals the number of "
"input image channels divided by the groups.");
AddOutput("Output",
7 years ago
"(Tensor) The output tensor of convolution operator."
"The format of output tensor is also NCDHW.");
7 years ago
AddAttr<std::vector<int>>("strides",
"(vector<int>, default:{1, 1, 1}), the "
"strides(d_stride, h_stride, w_stride) of "
"convolution operator.")
.SetDefault({1, 1, 1});
7 years ago
AddAttr<std::vector<int>>("paddings",
"(vector<int>, default:{0, 0, 0}), the "
"paddings(d_pad, h_pad, w_pad) of convolution "
"operator.")
.SetDefault({0, 0, 0});
AddAttr<int>(
"groups",
"(int default:1), the groups number of the convolution operator. "
7 years ago
"According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
"when group=2, the first half of the filters is only connected to the "
"first half of the input channels, while the second half of the filters "
"is only connected to the second half of the input channels.")
.SetDefault(1);
AddAttr<std::vector<int>>("dilations",
7 years ago
"(vector<int> default:{1, 1, 1}), the "
"dilations(d_dilation, h_dilation, w_dilation) of "
"convolution operator.")
7 years ago
.SetDefault({1, 1, 1});
7 years ago
AddComment(R"DOC(
7 years ago
Convolution3D Operator.
The convolution operation calculates the output based on the input, filter
and strides, paddings, dilations, groups parameters. The size of each dimension of the
parameters is checked in the infer-shape.
Input(Input) and output(Output) are in NCDHW format, where N is batch
7 years ago
size, C is the number of channels,D is the depth of the feature, H is the height of
the feature, and W is the width of the feature.
Filters(Input) is MCDHW format, where M is the number of output image channels,
C is the number of input image channels, D is the depth of the filter,
H is the height of the filter, and W is the width of the filter.
Parameters(strides, paddings, dilations) are three elements. These three elements
represent depth, height and width, respectively.
7 years ago
The input(X) size and output(Out) size may be different.
Example:
Input:
Input shape: $(N, C_{in}, D_{in}, H_{in}, W_{in})$
Filter shape: $(C_{out}, C_{in}, D_f, H_f, W_f)$
7 years ago
Output:
Output shape: $(N, C_{out}, D_{out}, H_{out}, W_{out})$
Where
$$
D_{out}= \frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{ strides[0]}+ 1 \\
H_{out}= \frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{ strides[1]}+ 1 \\
W_{out}= \frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{ strides[2]}+ 1
$$
)DOC");
}
void ConvOpGrad::InferShape(framework::InferShapeContext* ctx) const {
auto in_dims = ctx->GetInputDim("Input");
auto filter_dims = ctx->GetInputDim("Filter");
if (ctx->HasOutput(framework::GradVarName("Input"))) {
ctx->SetOutputDim(framework::GradVarName("Input"), in_dims);
}
if (ctx->HasOutput(framework::GradVarName("Filter"))) {
ctx->SetOutputDim(framework::GradVarName("Filter"), filter_dims);
}
}
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP(conv2d, ops::ConvOp, ops::Conv2DOpMaker, conv2d_grad,
ops::ConvOpGrad);
namespace ops = paddle::operators;
REGISTER_OP(conv3d, ops::ConvOp, ops::Conv3DOpMaker, conv3d_grad,
ops::ConvOpGrad);
REGISTER_OP_CPU_KERNEL(
conv2d, ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
conv2d_grad,
ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
conv3d, ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
conv3d_grad,
ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);