|
|
|
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
import paddle.fluid as fluid
|
|
|
|
from utils import gen_data
|
|
|
|
from nets import mlp
|
|
|
|
from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler import fleet
|
|
|
|
from paddle.fluid.incubate.fleet.base import role_maker
|
|
|
|
|
|
|
|
input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
|
|
|
|
input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
|
|
|
|
input_y = fluid.layers.cast(input_y, dtype="float32")
|
|
|
|
|
|
|
|
with fluid.device_guard("gpu"):
|
|
|
|
input_y = fluid.layers.cast(input_y, dtype="int64")
|
|
|
|
cost = mlp(input_x, input_y)
|
|
|
|
|
|
|
|
optimizer = fluid.optimizer.Adagrad(learning_rate=0.01)
|
|
|
|
|
|
|
|
role = role_maker.PaddleCloudRoleMaker()
|
|
|
|
fleet.init(role)
|
|
|
|
|
|
|
|
optimizer = fleet.distributed_optimizer(optimizer)
|
|
|
|
optimizer.minimize(cost)
|
|
|
|
|
|
|
|
if fleet.is_server():
|
|
|
|
fleet.init_server()
|
|
|
|
fleet.run_server()
|
|
|
|
elif fleet.is_worker():
|
|
|
|
place = fluid.CPUPlace()
|
|
|
|
exe = fluid.Executor(place)
|
|
|
|
exe.run(fleet.startup_program)
|
|
|
|
step = 1001
|
|
|
|
for i in range(step):
|
|
|
|
cost_val = exe.run(program=fleet.main_program,
|
|
|
|
feed=gen_data(),
|
|
|
|
fetch_list=[cost.name])
|
|
|
|
print("worker_index: %d, step%d cost = %f" %
|
|
|
|
(fleet.worker_index(), i, cost_val[0]))
|