You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/parallel_dygraph_sparse_emb...

127 lines
4.2 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import numpy as np
import paddle
import paddle.fluid as fluid
from paddle.fluid.dygraph.nn import Embedding
from paddle.fluid.dygraph.base import to_variable
from test_dist_base import runtime_main, TestParallelDyGraphRunnerBase
class SimpleNet(fluid.Layer):
def __init__(self,
hidden_size,
vocab_size,
num_steps=20,
init_scale=0.1,
is_sparse=False,
dtype="float32"):
super(SimpleNet, self).__init__()
self.hidden_size = hidden_size
self.vocab_size = vocab_size
self.init_scale = init_scale
self.num_steps = num_steps
self.embedding = Embedding(
size=[self.vocab_size, self.hidden_size],
dtype=dtype,
is_sparse=is_sparse,
param_attr=fluid.ParamAttr(
name='embedding_param',
initializer=fluid.initializer.UniformInitializer(
low=-init_scale, high=init_scale)))
self.softmax_weight = self.create_parameter(
attr=fluid.ParamAttr(),
shape=[self.hidden_size, self.vocab_size],
dtype=dtype,
default_initializer=fluid.initializer.UniformInitializer(
low=-self.init_scale, high=self.init_scale))
self.softmax_bias = self.create_parameter(
attr=fluid.ParamAttr(),
shape=[self.vocab_size],
dtype=dtype,
default_initializer=fluid.initializer.UniformInitializer(
low=-self.init_scale, high=self.init_scale))
def forward(self, input, label):
x_emb = self.embedding(input)
fc = fluid.layers.matmul(x_emb, self.softmax_weight)
fc = fluid.layers.elementwise_add(fc, self.softmax_bias)
projection = fluid.layers.reshape(fc, shape=[-1, self.vocab_size])
loss = fluid.layers.softmax_with_cross_entropy(
logits=projection, label=label, soft_label=False)
loss = fluid.layers.reshape(loss, shape=[-1, self.num_steps])
loss = fluid.layers.reduce_mean(loss, dim=[0])
loss = fluid.layers.reduce_sum(loss)
return loss
# global configs
batch_size = 4
batch_num = 200
hidden_size = 10
vocab_size = 1000
num_steps = 3
init_scale = 0.1
def fake_sample_reader():
def __reader__():
for i in range(batch_num):
x_data = np.arange(num_steps).astype('int64')
y_data = np.arange(1, 1 + num_steps).astype('int64')
yield x_data, y_data
return __reader__
class TestSparseEmbedding(TestParallelDyGraphRunnerBase):
def get_model(self):
model = SimpleNet(
hidden_size=hidden_size,
vocab_size=vocab_size,
num_steps=num_steps,
init_scale=init_scale,
is_sparse=True)
train_reader = paddle.batch(
fake_sample_reader(), batch_size=batch_size, drop_last=True)
optimizer = fluid.optimizer.SGD(learning_rate=0.001,
parameter_list=model.parameters())
return model, train_reader, optimizer
def run_one_loop(self, model, optimizer, batch):
x_data = np.array([x[0].reshape(3) for x in batch]).astype('int64')
y_data = np.array([x[1].reshape(3) for x in batch]).astype('int64')
x_data = x_data.reshape((-1, num_steps, 1))
y_data = y_data.reshape((-1, 1))
x = to_variable(x_data)
y = to_variable(y_data)
dy_loss = model(x, y)
return dy_loss
if __name__ == "__main__":
runtime_main(TestSparseEmbedding)