You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_entry_attr.py

106 lines
3.3 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import paddle
paddle.enable_static()
import unittest
import paddle.fluid as fluid
from paddle.distributed import ProbabilityEntry, CountFilterEntry
class EntryAttrChecks(unittest.TestCase):
def base(self):
with self.assertRaises(NotImplementedError):
from paddle.distributed.entry_attr import EntryAttr
base = EntryAttr()
base._to_attr()
def probability_entry(self):
prob = ProbabilityEntry(0.5)
ss = prob._to_attr()
self.assertEqual("probability_entry:0.5", ss)
with self.assertRaises(ValueError):
prob1 = ProbabilityEntry("none")
with self.assertRaises(ValueError):
prob2 = ProbabilityEntry(-1)
def countfilter_entry(self):
counter = CountFilterEntry(20)
ss = counter._to_attr()
self.assertEqual("count_filter_entry:20", ss)
with self.assertRaises(ValueError):
counter1 = CountFilterEntry("none")
with self.assertRaises(ValueError):
counter2 = CountFilterEntry(-1)
def spaese_layer(self):
prog = fluid.Program()
scope = fluid.core.Scope()
with fluid.scope_guard(scope):
with fluid.program_guard(prog):
input = fluid.layers.data(
name="dnn_data",
shape=[-1, 1],
dtype="int64",
lod_level=1,
append_batch_size=False)
prob = ProbabilityEntry(0.5)
emb = paddle.static.nn.sparse_embedding(
input=input,
size=[100, 10],
is_test=False,
entry=prob,
param_attr=fluid.ParamAttr(name="deep_embedding"))
pool = fluid.layers.sequence_pool(input=emb, pool_type="sum")
predict = fluid.layers.fc(input=pool, size=2, act='softmax')
block = prog.global_block()
for op in block.ops:
if op.type == "lookup_table":
entry = op.attr("entry")
is_test = op.attr("is_test")
is_sparse = op.attr("is_sparse")
is_distributed = op.attr("is_distributed")
self.assertEqual(entry, "probability_entry:0.5")
self.assertTrue(is_distributed)
self.assertTrue(is_sparse)
self.assertFalse(is_test)
class TestEntryAttrs(EntryAttrChecks):
def test_base(self):
self.base()
def test_prob(self):
self.probability_entry()
def test_counter(self):
self.countfilter_entry()
def test_spaese_embedding_layer(self):
self.spaese_layer()
if __name__ == '__main__':
unittest.main()