You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_ftrl_op.py

205 lines
6.5 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import paddle.fluid.core as core
from paddle.fluid.op import Operator
from op_test import OpTest
def ftrl_step(param, grad, rows, sq_accum, lin_accum, lr, l1, l2, lr_power):
l1 += 1e-10
l2 += 1e-10
param_hit = param[rows]
sq_accum_hit = sq_accum[rows]
lin_accum_hit = lin_accum[rows]
new_accum = sq_accum_hit + grad * grad
if lr_power == -0.5:
lin_accum_updated = lin_accum_hit + grad - (
(np.sqrt(new_accum) - np.sqrt(sq_accum_hit)) / lr) * param_hit
else:
lin_accum_updated = lin_accum_hit + grad - (
(np.power(new_accum, -lr_power) - np.power(sq_accum_hit, -lr_power)
) / lr) * param_hit
x = l1 * np.sign(lin_accum_updated) - lin_accum_updated
if lr_power == -0.5:
y = (np.sqrt(new_accum) / lr) + (2 * l2)
pre_shrink = x / y
param_updated = np.where(
np.abs(lin_accum_updated) > l1, pre_shrink, 0.0)
else:
y = (np.power(new_accum, -lr_power) / lr) + (2 * l2)
pre_shrink = x / y
param_updated = np.where(
np.abs(lin_accum_updated) > l1, pre_shrink, 0.0)
sq_accum_updated = sq_accum_hit + grad * grad
param_out = param.copy()
sq_accum_out = sq_accum.copy()
lin_accum_out = lin_accum.copy()
for i in range(len(rows)):
param_out[rows[i]] = param_updated[i]
sq_accum_out[rows[i]] = sq_accum_updated[i]
lin_accum_out[rows[i]] = lin_accum_updated[i]
return param_out, sq_accum_out, lin_accum_out
class TestFTRLOp(OpTest):
def setUp(self):
self.op_type = "ftrl"
rows = 102
w = np.random.random((rows, 105)).astype("float32")
g = np.random.random((rows, 105)).astype("float32")
sq_accum = np.full((rows, 105), 0.1).astype("float32")
linear_accum = np.full((rows, 105), 0.1).astype("float32")
lr = np.array([0.01]).astype("float32")
l1 = 0.1
l2 = 0.2
lr_power = -0.5
self.inputs = {
'Param': w,
'SquaredAccumulator': sq_accum,
'LinearAccumulator': linear_accum,
'Grad': g,
'LearningRate': lr
}
self.attrs = {
'l1': l1,
'l2': l2,
'lr_power': lr_power,
'learning_rate': lr
}
param_out, sq_accum_out, lin_accum_out = ftrl_step(
w, g, range(rows), sq_accum, linear_accum, lr, l1, l2, lr_power)
self.outputs = {
'ParamOut': param_out,
'SquaredAccumOut': sq_accum_out,
'LinearAccumOut': lin_accum_out
}
def test_check_output(self):
self.check_output()
class TestSparseFTRLOp(unittest.TestCase):
def setUp(self):
self.lr_power = -0.5
def check_with_place(self, place):
self.init_kernel()
scope = core.Scope()
height = 10
rows = [0, 4, 7]
row_numel = 12
l1 = 0.1
l2 = 0.2
lr_power = self.lr_power
# create and initialize Param Variable
param = scope.var('Param').get_tensor()
param_array = np.random.random((height, row_numel)).astype("float32")
param.set(param_array, place)
# create and initialize Grad Variable
grad = scope.var('Grad').get_selected_rows()
grad.set_height(height)
grad.set_rows(rows)
grad_array = np.random.random((len(rows), row_numel)).astype("float32")
grad_tensor = grad.get_tensor()
grad_tensor.set(grad_array, place)
# create and initialize SquaredAccumulator Variable
sq_accum = scope.var('SquaredAccumulator').get_tensor()
sq_accum_array = np.full((height, row_numel), 0.1).astype("float32")
sq_accum.set(sq_accum_array, place)
# create and initialize LinearAccumulator Variable
lin_accum = scope.var('LinearAccumulator').get_tensor()
lin_accum_array = np.full((height, row_numel), 0.1).astype("float32")
lin_accum.set(lin_accum_array, place)
# create and initialize LeraningRate Variable
lr = scope.var('LearningRate').get_tensor()
lr_array = np.array([0.01]).astype("float32")
lr.set(lr_array, place)
# calculate ground-truth answer
param_out, sq_accum_out, lin_accum_out = ftrl_step(
param_array, grad_array, rows, sq_accum_array, lin_accum_array, lr,
l1, l2, lr_power)
# create and run operator
op = Operator(
"ftrl",
Param='Param',
Grad='Grad',
ParamOut='Param',
SquaredAccumulator='SquaredAccumulator',
SquaredAccumOut='SquaredAccumulator',
LinearAccumulator='LinearAccumulator',
LinearAccumOut='LinearAccumulator',
LearningRate='LearningRate',
l1=l1,
l2=l2,
lr_power=lr_power)
op.run(scope, place)
# get and compare param result
param_array = np.array(param)
sq_accum_array = np.array(sq_accum)
lin_accum_array = np.array(lin_accum)
for i in range(height):
for j in range(row_numel):
self.assertAlmostEqual(
param_out[i][j], param_array[i][j], places=4)
self.assertAlmostEqual(
sq_accum_out[i][j], sq_accum_array[i][j], places=4)
self.assertAlmostEqual(
lin_accum_out[i][j], lin_accum_array[i][j], places=4)
def init_kernel(self):
pass
def test_sparse_ftrl(self):
places = [core.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(core.CUDAPlace(0))
for place in places:
self.check_with_place(place)
class TestSparseFTRLOp2(TestSparseFTRLOp):
def init_kernel(self):
self.lr_power = -0.6
if __name__ == "__main__":
unittest.main()