You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
89 lines
3.1 KiB
89 lines
3.1 KiB
4 years ago
|
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
from __future__ import print_function
|
||
|
|
||
|
import unittest
|
||
|
import numpy as np
|
||
|
import paddle
|
||
|
from paddle.static import Program, program_guard
|
||
|
|
||
|
DELTA = 1e-6
|
||
|
|
||
|
|
||
|
class TestMedian(unittest.TestCase):
|
||
|
def check_numpy_res(self, np1, np2):
|
||
|
self.assertEqual(np1.shape, np2.shape)
|
||
|
mismatch = np.sum((np1 - np2) * (np1 - np2))
|
||
|
self.assertAlmostEqual(mismatch, 0, DELTA)
|
||
|
|
||
|
def static_single_test_median(self, lis_test):
|
||
|
paddle.enable_static()
|
||
|
x, axis, keepdims = lis_test
|
||
|
res_np = np.median(x, axis=axis, keepdims=keepdims)
|
||
|
if not isinstance(res_np, np.ndarray):
|
||
|
res_np = np.array([res_np])
|
||
|
main_program = Program()
|
||
|
startup_program = Program()
|
||
|
exe = paddle.static.Executor()
|
||
|
with program_guard(main_program, startup_program):
|
||
|
x_in = paddle.fluid.data(shape=x.shape, dtype=x.dtype, name='x')
|
||
|
y = paddle.median(x_in, axis, keepdims)
|
||
|
[res_pd] = exe.run(feed={'x': x}, fetch_list=[y])
|
||
|
self.check_numpy_res(res_pd, res_np)
|
||
|
paddle.disable_static()
|
||
|
|
||
|
def dygraph_single_test_median(self, lis_test):
|
||
|
x, axis, keepdims = lis_test
|
||
|
res_np = np.median(x, axis=axis, keepdims=keepdims)
|
||
|
if not isinstance(res_np, np.ndarray):
|
||
|
res_np = np.array([res_np])
|
||
|
res_pd = paddle.median(paddle.to_tensor(x), axis, keepdims)
|
||
|
self.check_numpy_res(res_pd.numpy(), res_np)
|
||
|
|
||
|
def test_median_static(self):
|
||
|
h = 3
|
||
|
w = 4
|
||
|
l = 2
|
||
|
x = np.arange(h * w * l).reshape([h, w, l])
|
||
|
lis_tests = [[x, axis, keepdims]
|
||
|
for axis in [-1, 0, 1, 2, None]
|
||
|
for keepdims in [False, True]]
|
||
|
for lis_test in lis_tests:
|
||
|
self.static_single_test_median(lis_test)
|
||
|
|
||
|
def test_median_dygraph(self):
|
||
|
paddle.disable_static()
|
||
|
h = 3
|
||
|
w = 4
|
||
|
l = 2
|
||
|
x = np.arange(h * w * l).reshape([h, w, l])
|
||
|
lis_tests = [[x, axis, keepdims]
|
||
|
for axis in [-1, 0, 1, 2, None]
|
||
|
for keepdims in [False, True]]
|
||
|
for lis_test in lis_tests:
|
||
|
self.dygraph_single_test_median(lis_test)
|
||
|
|
||
|
def test_median_exception(self):
|
||
|
paddle.disable_static()
|
||
|
x = [1, 2, 3, 4]
|
||
|
self.assertRaises(TypeError, paddle.median, x)
|
||
|
x = paddle.arange(12).reshape([3, 4])
|
||
|
self.assertRaises(ValueError, paddle.median, x, 1.0)
|
||
|
self.assertRaises(ValueError, paddle.median, x, 2)
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
unittest.main()
|