You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_pad3d_op.py

766 lines
27 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
from op_test import OpTest
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
import paddle.fluid.core as core
from paddle.fluid import Program, program_guard, Executor, default_main_program
class TestPad3dOp(OpTest):
def setUp(self):
paddle.enable_static()
self.value = 0.0
self.variable_paddings = False
self.initTestCase()
self.op_type = "pad3d"
self.inputs = {'X': np.random.random(self.shape).astype("float64")}
self.attrs = {}
if self.variable_paddings:
self.attrs['paddings'] = []
self.inputs['Paddings'] = np.array(self.paddings).flatten().astype(
"int32")
else:
self.attrs['paddings'] = np.array(self.paddings).flatten().astype(
"int32")
self.attrs['value'] = self.value
self.attrs['mode'] = self.mode
self.attrs['data_format'] = self.data_format
if self.data_format == "NCDHW":
paddings = [
(0, 0),
(0, 0),
(self.paddings[4], self.paddings[5]),
(self.paddings[2], self.paddings[3]),
(self.paddings[0], self.paddings[1]),
]
else:
paddings = [
(0, 0),
(self.paddings[4], self.paddings[5]),
(self.paddings[2], self.paddings[3]),
(self.paddings[0], self.paddings[1]),
(0, 0),
]
if self.mode == "constant":
out = np.pad(self.inputs['X'],
paddings,
mode=self.mode,
constant_values=self.value)
elif self.mode == "reflect":
out = np.pad(self.inputs['X'], paddings, mode=self.mode)
elif self.mode == "replicate":
out = np.pad(self.inputs['X'], paddings, mode="edge")
elif self.mode == "circular":
out = np.pad(self.inputs['X'], paddings, mode="wrap")
self.outputs = {'Out': out}
def test_check_output(self):
self.check_output()
def test_check_grad_normal(self):
self.check_grad(['X'], 'Out')
def initTestCase(self):
self.shape = (2, 3, 4, 5, 6)
self.paddings = [0, 0, 0, 0, 0, 0]
self.mode = "constant"
self.data_format = "NCDHW"
self.pad_value = 0.0
class TestCase1(TestPad3dOp):
def initTestCase(self):
self.shape = (2, 3, 4, 5, 6)
self.paddings = [0, 1, 2, 3, 4, 5]
self.mode = "constant"
self.data_format = "NCDHW"
self.value = 1.0
class TestCase2(TestPad3dOp):
def initTestCase(self):
self.shape = (2, 3, 4, 5, 6)
self.paddings = [1, 1, 1, 1, 1, 1]
self.mode = "constant"
self.data_format = "NDHWC"
self.value = 1.0
class TestCase3(TestPad3dOp):
def initTestCase(self):
self.shape = (2, 3, 4, 5, 6)
self.paddings = [0, 1, 1, 0, 2, 3]
self.mode = "reflect"
self.data_format = "NCDHW"
class TestCase4(TestPad3dOp):
def initTestCase(self):
self.shape = (4, 4, 4, 4, 4)
self.paddings = [0, 1, 2, 1, 2, 3]
self.mode = "reflect"
self.data_format = "NDHWC"
class TestCase5(TestPad3dOp):
def initTestCase(self):
self.shape = (2, 3, 4, 5, 6)
self.paddings = [0, 1, 2, 3, 2, 1]
self.mode = "replicate"
self.data_format = "NCDHW"
class TestCase6(TestPad3dOp):
def initTestCase(self):
self.shape = (4, 4, 4, 4, 4)
self.paddings = [5, 4, 2, 1, 2, 3]
self.mode = "replicate"
self.data_format = "NDHWC"
class TestCase7(TestPad3dOp):
def initTestCase(self):
self.shape = (2, 3, 4, 5, 6)
self.paddings = [0, 1, 2, 3, 2, 1]
self.mode = "circular"
self.data_format = "NCDHW"
class TestCase8(TestPad3dOp):
def initTestCase(self):
self.shape = (4, 4, 4, 4, 4)
self.paddings = [0, 1, 2, 1, 2, 3]
self.mode = "circular"
self.data_format = "NDHWC"
class TestPadAPI(unittest.TestCase):
def setUp(self):
self.places = [paddle.CPUPlace()]
if core.is_compiled_with_cuda():
self.places.append(paddle.CUDAPlace(0))
def check_static_result_1(self, place):
paddle.enable_static()
with program_guard(Program(), Program()):
input_shape = (1, 2, 3, 4, 5)
pad = [1, 2, 1, 1, 3, 4]
mode = "constant"
value = 100
input_data = np.random.rand(*input_shape).astype(np.float32)
Remove and reorganize the alias of APIs (#27717) * modify cond while_loop to paddle.static.nn.cond * modify crop_tensor to paddle.crop * modify Variable to paddle.static.Variable * remove nn.beam_search, nn.beam_search_decode, nn.gather_tree * remove bpr_loss, center_loss, rank_loss, smooth_l1, teacher_student_sigmoid_loss, edit_distance, sampled_softmax_with_cross_entropy in nn.functional * remove apis in nn.functional.learn_rate.py * remove pool2d, pool3d, adaptive_pool2d, adaptive_pool3d in nn.functional * remove apis in nn.functional.vision * remove erf, soft_relu in nn.functional.activation * remove apis in nn.functional.extension * remove nn.functional.rnn * remove hash from nn.functional.lod * remove row_conv from nn.functional.extension * remove one_hot, pad2d, pad_constant_like from nn.functional.common * remove nn.gather_tree, nn.BilinearTensorProduct, nn.Pool2D, nn.Pad2D * remove apis from optimizer.__init * remove tensor.creation.fill_constant * remove elementwise_mul in nn.functional.common and modify to paddle.multiply * remove tensor.stat.reduce_mean * remove reduce_all, reduce_any in tensor.logic * remove apis in tensor.math * remove apis in tensor.__init__ * remove has_inf, has_nan in tensor.search * remove apis in framework.__init__ * remove apis in paddle.__init__ * remove apis in nn.functional.__init__ * modify removed alias apis to raw api in doc and unittests * fix remove grid_sample bug * modify removed alias apis to raw api in doc and unittests * modify removed alias apis to raw api in doc and unittests * modify removed alias apis to raw api in doc and unittests * modify removed alias apis to raw api in doc and unittests * modify removed alias apis to raw api in doc and unittests * modify removed alias apis to raw api in doc and unittests * delete alias api relastions in doc * reserve paddle.compat, paddle.sysconfig * remove unittest for paddle.reduce_all, paddle.reduce_any * modify removed alias apis to raw api in doc and unittests * recover paddle.save and paddle.load * resolve conflicts * fix sample code missing paddle.enable_static() bug * fix sample code missing paddle.enable_static() bug * fix to_string sample code error
4 years ago
x = paddle.fluid.data(name="x", shape=input_shape)
result = F.pad(x=x,
pad=pad,
value=value,
mode=mode,
data_format="NCDHW")
exe = Executor(place)
fetches = exe.run(default_main_program(),
feed={"x": input_data},
fetch_list=[result])
np_out = self._get_numpy_out(input_data, pad, mode, value)
self.assertTrue(np.allclose(fetches[0], np_out))
def check_static_result_2(self, place):
paddle.enable_static()
with program_guard(Program(), Program()):
input_shape = (2, 3, 4, 5, 6)
pad = [1, 2, 1, 1, 1, 2]
mode = "reflect"
input_data = np.random.rand(*input_shape).astype(np.float32)
Remove and reorganize the alias of APIs (#27717) * modify cond while_loop to paddle.static.nn.cond * modify crop_tensor to paddle.crop * modify Variable to paddle.static.Variable * remove nn.beam_search, nn.beam_search_decode, nn.gather_tree * remove bpr_loss, center_loss, rank_loss, smooth_l1, teacher_student_sigmoid_loss, edit_distance, sampled_softmax_with_cross_entropy in nn.functional * remove apis in nn.functional.learn_rate.py * remove pool2d, pool3d, adaptive_pool2d, adaptive_pool3d in nn.functional * remove apis in nn.functional.vision * remove erf, soft_relu in nn.functional.activation * remove apis in nn.functional.extension * remove nn.functional.rnn * remove hash from nn.functional.lod * remove row_conv from nn.functional.extension * remove one_hot, pad2d, pad_constant_like from nn.functional.common * remove nn.gather_tree, nn.BilinearTensorProduct, nn.Pool2D, nn.Pad2D * remove apis from optimizer.__init * remove tensor.creation.fill_constant * remove elementwise_mul in nn.functional.common and modify to paddle.multiply * remove tensor.stat.reduce_mean * remove reduce_all, reduce_any in tensor.logic * remove apis in tensor.math * remove apis in tensor.__init__ * remove has_inf, has_nan in tensor.search * remove apis in framework.__init__ * remove apis in paddle.__init__ * remove apis in nn.functional.__init__ * modify removed alias apis to raw api in doc and unittests * fix remove grid_sample bug * modify removed alias apis to raw api in doc and unittests * modify removed alias apis to raw api in doc and unittests * modify removed alias apis to raw api in doc and unittests * modify removed alias apis to raw api in doc and unittests * modify removed alias apis to raw api in doc and unittests * modify removed alias apis to raw api in doc and unittests * delete alias api relastions in doc * reserve paddle.compat, paddle.sysconfig * remove unittest for paddle.reduce_all, paddle.reduce_any * modify removed alias apis to raw api in doc and unittests * recover paddle.save and paddle.load * resolve conflicts * fix sample code missing paddle.enable_static() bug * fix sample code missing paddle.enable_static() bug * fix to_string sample code error
4 years ago
x = paddle.fluid.data(name="x", shape=input_shape)
result1 = F.pad(x=x, pad=pad, mode=mode, data_format="NCDHW")
result2 = F.pad(x=x, pad=pad, mode=mode, data_format="NDHWC")
exe = Executor(place)
fetches = exe.run(default_main_program(),
feed={"x": input_data},
fetch_list=[result1, result2])
np_out1 = self._get_numpy_out(
input_data, pad, mode, data_format="NCDHW")
np_out2 = self._get_numpy_out(
input_data, pad, mode, data_format="NDHWC")
self.assertTrue(np.allclose(fetches[0], np_out1))
self.assertTrue(np.allclose(fetches[1], np_out2))
def check_static_result_3(self, place):
paddle.enable_static()
with program_guard(Program(), Program()):
input_shape = (2, 3, 4, 5, 6)
pad = [1, 2, 1, 1, 3, 4]
mode = "replicate"
input_data = np.random.rand(*input_shape).astype(np.float32)
Remove and reorganize the alias of APIs (#27717) * modify cond while_loop to paddle.static.nn.cond * modify crop_tensor to paddle.crop * modify Variable to paddle.static.Variable * remove nn.beam_search, nn.beam_search_decode, nn.gather_tree * remove bpr_loss, center_loss, rank_loss, smooth_l1, teacher_student_sigmoid_loss, edit_distance, sampled_softmax_with_cross_entropy in nn.functional * remove apis in nn.functional.learn_rate.py * remove pool2d, pool3d, adaptive_pool2d, adaptive_pool3d in nn.functional * remove apis in nn.functional.vision * remove erf, soft_relu in nn.functional.activation * remove apis in nn.functional.extension * remove nn.functional.rnn * remove hash from nn.functional.lod * remove row_conv from nn.functional.extension * remove one_hot, pad2d, pad_constant_like from nn.functional.common * remove nn.gather_tree, nn.BilinearTensorProduct, nn.Pool2D, nn.Pad2D * remove apis from optimizer.__init * remove tensor.creation.fill_constant * remove elementwise_mul in nn.functional.common and modify to paddle.multiply * remove tensor.stat.reduce_mean * remove reduce_all, reduce_any in tensor.logic * remove apis in tensor.math * remove apis in tensor.__init__ * remove has_inf, has_nan in tensor.search * remove apis in framework.__init__ * remove apis in paddle.__init__ * remove apis in nn.functional.__init__ * modify removed alias apis to raw api in doc and unittests * fix remove grid_sample bug * modify removed alias apis to raw api in doc and unittests * modify removed alias apis to raw api in doc and unittests * modify removed alias apis to raw api in doc and unittests * modify removed alias apis to raw api in doc and unittests * modify removed alias apis to raw api in doc and unittests * modify removed alias apis to raw api in doc and unittests * delete alias api relastions in doc * reserve paddle.compat, paddle.sysconfig * remove unittest for paddle.reduce_all, paddle.reduce_any * modify removed alias apis to raw api in doc and unittests * recover paddle.save and paddle.load * resolve conflicts * fix sample code missing paddle.enable_static() bug * fix sample code missing paddle.enable_static() bug * fix to_string sample code error
4 years ago
x = paddle.fluid.data(name="x", shape=input_shape)
result1 = F.pad(x=x, pad=pad, mode=mode, data_format="NCDHW")
result2 = F.pad(x=x, pad=pad, mode=mode, data_format="NDHWC")
exe = Executor(place)
fetches = exe.run(default_main_program(),
feed={"x": input_data},
fetch_list=[result1, result2])
np_out1 = self._get_numpy_out(
input_data, pad, mode, data_format="NCDHW")
np_out2 = self._get_numpy_out(
input_data, pad, mode, data_format="NDHWC")
self.assertTrue(np.allclose(fetches[0], np_out1))
self.assertTrue(np.allclose(fetches[1], np_out2))
def check_static_result_4(self, place):
paddle.enable_static()
with program_guard(Program(), Program()):
input_shape = (2, 3, 4, 5, 6)
pad = [1, 2, 1, 1, 3, 4]
mode = "circular"
input_data = np.random.rand(*input_shape).astype(np.float32)
Remove and reorganize the alias of APIs (#27717) * modify cond while_loop to paddle.static.nn.cond * modify crop_tensor to paddle.crop * modify Variable to paddle.static.Variable * remove nn.beam_search, nn.beam_search_decode, nn.gather_tree * remove bpr_loss, center_loss, rank_loss, smooth_l1, teacher_student_sigmoid_loss, edit_distance, sampled_softmax_with_cross_entropy in nn.functional * remove apis in nn.functional.learn_rate.py * remove pool2d, pool3d, adaptive_pool2d, adaptive_pool3d in nn.functional * remove apis in nn.functional.vision * remove erf, soft_relu in nn.functional.activation * remove apis in nn.functional.extension * remove nn.functional.rnn * remove hash from nn.functional.lod * remove row_conv from nn.functional.extension * remove one_hot, pad2d, pad_constant_like from nn.functional.common * remove nn.gather_tree, nn.BilinearTensorProduct, nn.Pool2D, nn.Pad2D * remove apis from optimizer.__init * remove tensor.creation.fill_constant * remove elementwise_mul in nn.functional.common and modify to paddle.multiply * remove tensor.stat.reduce_mean * remove reduce_all, reduce_any in tensor.logic * remove apis in tensor.math * remove apis in tensor.__init__ * remove has_inf, has_nan in tensor.search * remove apis in framework.__init__ * remove apis in paddle.__init__ * remove apis in nn.functional.__init__ * modify removed alias apis to raw api in doc and unittests * fix remove grid_sample bug * modify removed alias apis to raw api in doc and unittests * modify removed alias apis to raw api in doc and unittests * modify removed alias apis to raw api in doc and unittests * modify removed alias apis to raw api in doc and unittests * modify removed alias apis to raw api in doc and unittests * modify removed alias apis to raw api in doc and unittests * delete alias api relastions in doc * reserve paddle.compat, paddle.sysconfig * remove unittest for paddle.reduce_all, paddle.reduce_any * modify removed alias apis to raw api in doc and unittests * recover paddle.save and paddle.load * resolve conflicts * fix sample code missing paddle.enable_static() bug * fix sample code missing paddle.enable_static() bug * fix to_string sample code error
4 years ago
x = paddle.fluid.data(name="x", shape=input_shape)
result1 = F.pad(x=x, pad=pad, mode=mode, data_format="NCDHW")
result2 = F.pad(x=x, pad=pad, mode=mode, data_format="NDHWC")
exe = Executor(place)
fetches = exe.run(default_main_program(),
feed={"x": input_data},
fetch_list=[result1, result2])
np_out1 = self._get_numpy_out(
input_data, pad, mode, data_format="NCDHW")
np_out2 = self._get_numpy_out(
input_data, pad, mode, data_format="NDHWC")
self.assertTrue(np.allclose(fetches[0], np_out1))
self.assertTrue(np.allclose(fetches[1], np_out2))
def _get_numpy_out(self,
input_data,
pad,
mode,
value=0,
data_format="NCDHW"):
if mode == "constant" and len(pad) == len(input_data.shape) * 2:
pad = np.reshape(pad, (-1, 2)).tolist()
elif data_format == "NCDHW":
pad = [
(0, 0),
(0, 0),
(pad[4], pad[5]),
(pad[2], pad[3]),
(pad[0], pad[1]),
]
elif data_format == "NDHWC":
pad = [
(0, 0),
(pad[4], pad[5]),
(pad[2], pad[3]),
(pad[0], pad[1]),
(0, 0),
]
elif data_format == "NCHW":
pad = [
(0, 0),
(0, 0),
(pad[2], pad[3]),
(pad[0], pad[1]),
]
elif data_format == "NHWC":
pad = [
(0, 0),
(pad[2], pad[3]),
(pad[0], pad[1]),
(0, 0),
]
elif data_format == "NCL":
pad = [
(0, 0),
(0, 0),
(pad[0], pad[1]),
]
elif data_format == "NLC":
pad = [
(0, 0),
(pad[0], pad[1]),
(0, 0),
]
if mode == "constant":
out = np.pad(input_data, pad, mode=mode, constant_values=value)
elif mode == "reflect":
out = np.pad(input_data, pad, mode=mode)
elif mode == "replicate":
out = np.pad(input_data, pad, mode="edge")
elif mode == "circular":
out = np.pad(input_data, pad, mode="wrap")
return out
def test_static(self):
for place in self.places:
self.check_static_result_1(place=place)
self.check_static_result_2(place=place)
self.check_static_result_3(place=place)
self.check_static_result_4(place=place)
def test_dygraph_1(self):
paddle.disable_static()
input_shape = (1, 2, 3, 4, 5)
pad = [1, 2, 1, 1, 3, 4]
pad_3 = [1, 2, 1, 1, 3, 4, 5, 6, 7, 8]
mode = "constant"
value = 100
input_data = np.random.rand(*input_shape).astype(np.float32)
np_out1 = self._get_numpy_out(
input_data, pad, mode, value, data_format="NCDHW")
np_out2 = self._get_numpy_out(
input_data, pad, mode, value, data_format="NDHWC")
np_out3 = self._get_numpy_out(
input_data, pad_3, mode, value, data_format="NCDHW")
tensor_data = paddle.to_tensor(input_data)
y1 = F.pad(tensor_data,
pad=pad,
mode=mode,
value=value,
data_format="NCDHW")
y2 = F.pad(tensor_data,
pad=pad,
mode=mode,
value=value,
data_format="NDHWC")
y3 = F.pad(tensor_data,
pad=pad_3,
mode=mode,
value=value,
data_format="NCDHW")
self.assertTrue(np.allclose(y1.numpy(), np_out1))
self.assertTrue(np.allclose(y2.numpy(), np_out2))
self.assertTrue(np.allclose(y3.numpy(), np_out3))
def test_dygraph_2(self):
paddle.disable_static()
input_shape = (2, 3, 4, 5)
pad = [1, 1, 3, 4]
pad_3 = [1, 2, 1, 1, 3, 4, 5, 6]
mode = "constant"
value = 100
input_data = np.random.rand(*input_shape).astype(np.float32)
np_out1 = self._get_numpy_out(
input_data, pad, mode, value, data_format="NCHW")
np_out2 = self._get_numpy_out(
input_data, pad, mode, value, data_format="NHWC")
np_out3 = self._get_numpy_out(
input_data, pad_3, mode, value, data_format="NCHW")
tensor_data = paddle.to_tensor(input_data)
tensor_pad = paddle.to_tensor(pad, dtype="int32")
y1 = F.pad(tensor_data,
pad=tensor_pad,
mode=mode,
value=value,
data_format="NCHW")
y2 = F.pad(tensor_data,
pad=tensor_pad,
mode=mode,
value=value,
data_format="NHWC")
y3 = F.pad(tensor_data,
pad=pad_3,
mode=mode,
value=value,
data_format="NCHW")
self.assertTrue(np.allclose(y1.numpy(), np_out1))
self.assertTrue(np.allclose(y2.numpy(), np_out2))
self.assertTrue(np.allclose(y3.numpy(), np_out3))
def test_dygraph_3(self):
paddle.disable_static()
input_shape = (3, 4, 5)
pad = [3, 4]
pad_3 = [3, 4, 5, 6, 7, 8]
mode = "constant"
value = 100
input_data = np.random.rand(*input_shape).astype(np.float32)
np_out1 = self._get_numpy_out(
input_data, pad, mode, value, data_format="NCL")
np_out2 = self._get_numpy_out(
input_data, pad, mode, value, data_format="NLC")
np_out3 = self._get_numpy_out(
input_data, pad_3, mode, value, data_format="NCL")
tensor_data = paddle.to_tensor(input_data)
tensor_pad = paddle.to_tensor(pad, dtype="int32")
y1 = F.pad(tensor_data,
pad=tensor_pad,
mode=mode,
value=value,
data_format="NCL")
y2 = F.pad(tensor_data,
pad=tensor_pad,
mode=mode,
value=value,
data_format="NLC")
y3 = F.pad(tensor_data,
pad=pad_3,
mode=mode,
value=value,
data_format="NCL")
self.assertTrue(np.allclose(y1.numpy(), np_out1))
self.assertTrue(np.allclose(y2.numpy(), np_out2))
self.assertTrue(np.allclose(y3.numpy(), np_out3))
class TestPad1dAPI(unittest.TestCase):
def _get_numpy_out(self,
input_data,
pad,
mode,
value=0.0,
data_format="NCL"):
if data_format == "NCL":
pad = [
(0, 0),
(0, 0),
(pad[0], pad[1]),
]
else:
pad = [
(0, 0),
(pad[0], pad[1]),
(0, 0),
]
if mode == "constant":
out = np.pad(input_data, pad, mode=mode, constant_values=value)
elif mode == "reflect":
out = np.pad(input_data, pad, mode=mode)
elif mode == "replicate":
out = np.pad(input_data, pad, mode="edge")
elif mode == "circular":
out = np.pad(input_data, pad, mode="wrap")
return out
def setUp(self):
self.places = [paddle.CPUPlace()]
if core.is_compiled_with_cuda():
self.places.append(paddle.CUDAPlace(0))
def test_class(self):
paddle.disable_static()
for place in self.places:
input_shape = (3, 4, 5)
pad = [1, 2]
pad_int = 1
value = 100
input_data = np.random.rand(*input_shape).astype(np.float32)
pad_reflection = nn.Pad1D(padding=pad, mode="reflect")
pad_replication = nn.Pad1D(padding=pad, mode="replicate")
pad_constant = nn.Pad1D(padding=pad, mode="constant", value=value)
pad_constant_int = nn.Pad1D(
padding=pad_int, mode="constant", value=value)
pad_circular = nn.Pad1D(padding=pad, mode="circular")
data = paddle.to_tensor(input_data)
output = pad_reflection(data)
np_out = self._get_numpy_out(
input_data, pad, "reflect", data_format="NCL")
self.assertTrue(np.allclose(output.numpy(), np_out))
output = pad_replication(data)
np_out = self._get_numpy_out(
input_data, pad, "replicate", data_format="NCL")
self.assertTrue(np.allclose(output.numpy(), np_out))
output = pad_constant(data)
np_out = self._get_numpy_out(
input_data, pad, "constant", value=value, data_format="NCL")
self.assertTrue(np.allclose(output.numpy(), np_out))
output = pad_constant_int(data)
np_out = self._get_numpy_out(
input_data, [pad_int] * 2,
"constant",
value=value,
data_format="NCL")
self.assertTrue(np.allclose(output.numpy(), np_out))
output = pad_circular(data)
np_out = self._get_numpy_out(
input_data, pad, "circular", value=value, data_format="NCL")
self.assertTrue(np.allclose(output.numpy(), np_out))
class TestPad2dAPI(unittest.TestCase):
def _get_numpy_out(self,
input_data,
pad,
mode,
value=0.0,
data_format="NCHW"):
if data_format == "NCHW":
pad = [
(0, 0),
(0, 0),
(pad[2], pad[3]),
(pad[0], pad[1]),
]
else:
pad = [
(0, 0),
(pad[2], pad[3]),
(pad[0], pad[1]),
(0, 0),
]
if mode == "constant":
out = np.pad(input_data, pad, mode=mode, constant_values=value)
elif mode == "reflect":
out = np.pad(input_data, pad, mode=mode)
elif mode == "replicate":
out = np.pad(input_data, pad, mode="edge")
elif mode == "circular":
out = np.pad(input_data, pad, mode="wrap")
return out
def setUp(self):
self.places = [paddle.CPUPlace()]
if core.is_compiled_with_cuda():
self.places.append(paddle.CUDAPlace(0))
def test_class(self):
paddle.disable_static()
for place in self.places:
input_shape = (3, 4, 5, 6)
pad = [1, 2, 2, 1]
pad_int = 1
value = 100
input_data = np.random.rand(*input_shape).astype(np.float32)
pad_reflection = nn.Pad2D(padding=pad, mode="reflect")
pad_replication = nn.Pad2D(padding=pad, mode="replicate")
pad_constant = nn.Pad2D(padding=pad, mode="constant", value=value)
pad_constant_int = nn.Pad2D(
padding=pad_int, mode="constant", value=value)
pad_circular = nn.Pad2D(padding=pad, mode="circular")
data = paddle.to_tensor(input_data)
output = pad_reflection(data)
np_out = self._get_numpy_out(
input_data, pad, "reflect", data_format="NCHW")
self.assertTrue(np.allclose(output.numpy(), np_out))
output = pad_replication(data)
np_out = self._get_numpy_out(
input_data, pad, "replicate", data_format="NCHW")
self.assertTrue(np.allclose(output.numpy(), np_out))
output = pad_constant(data)
np_out = self._get_numpy_out(
input_data, pad, "constant", value=value, data_format="NCHW")
self.assertTrue(np.allclose(output.numpy(), np_out))
output = pad_constant_int(data)
np_out = self._get_numpy_out(
input_data, [pad_int] * 4,
"constant",
value=value,
data_format="NCHW")
self.assertTrue(np.allclose(output.numpy(), np_out))
output = pad_circular(data)
np_out = self._get_numpy_out(
input_data, pad, "circular", data_format="NCHW")
self.assertTrue(np.allclose(output.numpy(), np_out))
class TestPad3dAPI(unittest.TestCase):
def _get_numpy_out(self,
input_data,
pad,
mode,
value=0.0,
data_format="NCDHW"):
if data_format == "NCDHW":
pad = [
(0, 0),
(0, 0),
(pad[4], pad[5]),
(pad[2], pad[3]),
(pad[0], pad[1]),
]
else:
pad = [
(0, 0),
(pad[4], pad[5]),
(pad[2], pad[3]),
(pad[0], pad[1]),
(0, 0),
]
if mode == "constant":
out = np.pad(input_data, pad, mode=mode, constant_values=value)
elif mode == "reflect":
out = np.pad(input_data, pad, mode=mode)
elif mode == "replicate":
out = np.pad(input_data, pad, mode="edge")
elif mode == "circular":
out = np.pad(input_data, pad, mode="wrap")
return out
def setUp(self):
self.places = [paddle.CPUPlace()]
if core.is_compiled_with_cuda():
self.places.append(paddle.CUDAPlace(0))
def test_class(self):
paddle.disable_static()
for place in self.places:
input_shape = (3, 4, 5, 6, 7)
pad = [1, 2, 2, 1, 1, 0]
pad_int = 1
value = 100
input_data = np.random.rand(*input_shape).astype(np.float32)
pad_reflection = nn.Pad3D(padding=pad, mode="reflect")
pad_replication = nn.Pad3D(padding=pad, mode="replicate")
pad_constant = nn.Pad3D(padding=pad, mode="constant", value=value)
pad_constant_int = nn.Pad3D(
padding=pad_int, mode="constant", value=value)
pad_circular = nn.Pad3D(padding=pad, mode="circular")
data = paddle.to_tensor(input_data)
output = pad_reflection(data)
np_out = self._get_numpy_out(
input_data, pad, "reflect", data_format="NCDHW")
self.assertTrue(np.allclose(output.numpy(), np_out))
output = pad_replication(data)
np_out = self._get_numpy_out(
input_data, pad, "replicate", data_format="NCDHW")
self.assertTrue(np.allclose(output.numpy(), np_out))
output = pad_constant(data)
np_out = self._get_numpy_out(
input_data, pad, "constant", value=value, data_format="NCDHW")
self.assertTrue(np.allclose(output.numpy(), np_out))
output = pad_constant_int(data)
np_out = self._get_numpy_out(
input_data, [pad_int] * 6,
"constant",
value=value,
data_format="NCDHW")
self.assertTrue(np.allclose(output.numpy(), np_out))
output = pad_circular(data)
np_out = self._get_numpy_out(
input_data, pad, "circular", data_format="NCDHW")
self.assertTrue(np.allclose(output.numpy(), np_out))
class TestPad3dOpError(unittest.TestCase):
def test_errors(self):
def test_variable():
input_shape = (1, 2, 3, 4, 5)
data = np.random.rand(*input_shape).astype(np.float32)
F.pad(x=data, paddings=[1, 1, 1, 1, 1, 1])
def test_reflect_1():
input_shape = (1, 2, 3, 4, 5)
data = np.random.rand(*input_shape).astype(np.float32)
Remove and reorganize the alias of APIs (#27717) * modify cond while_loop to paddle.static.nn.cond * modify crop_tensor to paddle.crop * modify Variable to paddle.static.Variable * remove nn.beam_search, nn.beam_search_decode, nn.gather_tree * remove bpr_loss, center_loss, rank_loss, smooth_l1, teacher_student_sigmoid_loss, edit_distance, sampled_softmax_with_cross_entropy in nn.functional * remove apis in nn.functional.learn_rate.py * remove pool2d, pool3d, adaptive_pool2d, adaptive_pool3d in nn.functional * remove apis in nn.functional.vision * remove erf, soft_relu in nn.functional.activation * remove apis in nn.functional.extension * remove nn.functional.rnn * remove hash from nn.functional.lod * remove row_conv from nn.functional.extension * remove one_hot, pad2d, pad_constant_like from nn.functional.common * remove nn.gather_tree, nn.BilinearTensorProduct, nn.Pool2D, nn.Pad2D * remove apis from optimizer.__init * remove tensor.creation.fill_constant * remove elementwise_mul in nn.functional.common and modify to paddle.multiply * remove tensor.stat.reduce_mean * remove reduce_all, reduce_any in tensor.logic * remove apis in tensor.math * remove apis in tensor.__init__ * remove has_inf, has_nan in tensor.search * remove apis in framework.__init__ * remove apis in paddle.__init__ * remove apis in nn.functional.__init__ * modify removed alias apis to raw api in doc and unittests * fix remove grid_sample bug * modify removed alias apis to raw api in doc and unittests * modify removed alias apis to raw api in doc and unittests * modify removed alias apis to raw api in doc and unittests * modify removed alias apis to raw api in doc and unittests * modify removed alias apis to raw api in doc and unittests * modify removed alias apis to raw api in doc and unittests * delete alias api relastions in doc * reserve paddle.compat, paddle.sysconfig * remove unittest for paddle.reduce_all, paddle.reduce_any * modify removed alias apis to raw api in doc and unittests * recover paddle.save and paddle.load * resolve conflicts * fix sample code missing paddle.enable_static() bug * fix sample code missing paddle.enable_static() bug * fix to_string sample code error
4 years ago
x = paddle.fluid.data(name="x", shape=input_shape)
y = F.pad(x, pad=[5, 6, 1, 1, 1, 1], value=1, mode='reflect')
place = paddle.CPUPlace()
exe = Executor(place)
outputs = exe.run(feed={'x': data}, fetch_list=[y.name])
def test_reflect_2():
input_shape = (1, 2, 3, 4, 5)
data = np.random.rand(*input_shape).astype(np.float32)
Remove and reorganize the alias of APIs (#27717) * modify cond while_loop to paddle.static.nn.cond * modify crop_tensor to paddle.crop * modify Variable to paddle.static.Variable * remove nn.beam_search, nn.beam_search_decode, nn.gather_tree * remove bpr_loss, center_loss, rank_loss, smooth_l1, teacher_student_sigmoid_loss, edit_distance, sampled_softmax_with_cross_entropy in nn.functional * remove apis in nn.functional.learn_rate.py * remove pool2d, pool3d, adaptive_pool2d, adaptive_pool3d in nn.functional * remove apis in nn.functional.vision * remove erf, soft_relu in nn.functional.activation * remove apis in nn.functional.extension * remove nn.functional.rnn * remove hash from nn.functional.lod * remove row_conv from nn.functional.extension * remove one_hot, pad2d, pad_constant_like from nn.functional.common * remove nn.gather_tree, nn.BilinearTensorProduct, nn.Pool2D, nn.Pad2D * remove apis from optimizer.__init * remove tensor.creation.fill_constant * remove elementwise_mul in nn.functional.common and modify to paddle.multiply * remove tensor.stat.reduce_mean * remove reduce_all, reduce_any in tensor.logic * remove apis in tensor.math * remove apis in tensor.__init__ * remove has_inf, has_nan in tensor.search * remove apis in framework.__init__ * remove apis in paddle.__init__ * remove apis in nn.functional.__init__ * modify removed alias apis to raw api in doc and unittests * fix remove grid_sample bug * modify removed alias apis to raw api in doc and unittests * modify removed alias apis to raw api in doc and unittests * modify removed alias apis to raw api in doc and unittests * modify removed alias apis to raw api in doc and unittests * modify removed alias apis to raw api in doc and unittests * modify removed alias apis to raw api in doc and unittests * delete alias api relastions in doc * reserve paddle.compat, paddle.sysconfig * remove unittest for paddle.reduce_all, paddle.reduce_any * modify removed alias apis to raw api in doc and unittests * recover paddle.save and paddle.load * resolve conflicts * fix sample code missing paddle.enable_static() bug * fix sample code missing paddle.enable_static() bug * fix to_string sample code error
4 years ago
x = paddle.fluid.data(name="x", shape=input_shape)
y = F.pad(x, pad=[1, 1, 4, 3, 1, 1], value=1, mode='reflect')
place = paddle.CPUPlace()
exe = Executor(place)
outputs = exe.run(feed={'x': data}, fetch_list=[y.name])
def test_reflect_3():
input_shape = (1, 2, 3, 4, 5)
data = np.random.rand(*input_shape).astype(np.float32)
Remove and reorganize the alias of APIs (#27717) * modify cond while_loop to paddle.static.nn.cond * modify crop_tensor to paddle.crop * modify Variable to paddle.static.Variable * remove nn.beam_search, nn.beam_search_decode, nn.gather_tree * remove bpr_loss, center_loss, rank_loss, smooth_l1, teacher_student_sigmoid_loss, edit_distance, sampled_softmax_with_cross_entropy in nn.functional * remove apis in nn.functional.learn_rate.py * remove pool2d, pool3d, adaptive_pool2d, adaptive_pool3d in nn.functional * remove apis in nn.functional.vision * remove erf, soft_relu in nn.functional.activation * remove apis in nn.functional.extension * remove nn.functional.rnn * remove hash from nn.functional.lod * remove row_conv from nn.functional.extension * remove one_hot, pad2d, pad_constant_like from nn.functional.common * remove nn.gather_tree, nn.BilinearTensorProduct, nn.Pool2D, nn.Pad2D * remove apis from optimizer.__init * remove tensor.creation.fill_constant * remove elementwise_mul in nn.functional.common and modify to paddle.multiply * remove tensor.stat.reduce_mean * remove reduce_all, reduce_any in tensor.logic * remove apis in tensor.math * remove apis in tensor.__init__ * remove has_inf, has_nan in tensor.search * remove apis in framework.__init__ * remove apis in paddle.__init__ * remove apis in nn.functional.__init__ * modify removed alias apis to raw api in doc and unittests * fix remove grid_sample bug * modify removed alias apis to raw api in doc and unittests * modify removed alias apis to raw api in doc and unittests * modify removed alias apis to raw api in doc and unittests * modify removed alias apis to raw api in doc and unittests * modify removed alias apis to raw api in doc and unittests * modify removed alias apis to raw api in doc and unittests * delete alias api relastions in doc * reserve paddle.compat, paddle.sysconfig * remove unittest for paddle.reduce_all, paddle.reduce_any * modify removed alias apis to raw api in doc and unittests * recover paddle.save and paddle.load * resolve conflicts * fix sample code missing paddle.enable_static() bug * fix sample code missing paddle.enable_static() bug * fix to_string sample code error
4 years ago
x = paddle.fluid.data(name="x", shape=input_shape)
y = F.pad(x, pad=[1, 1, 1, 1, 2, 3], value=1, mode='reflect')
place = paddle.CPUPlace()
exe = Executor(place)
outputs = exe.run(feed={'x': data}, fetch_list=[y.name])
self.assertRaises(TypeError, test_variable)
self.assertRaises(Exception, test_reflect_1)
self.assertRaises(Exception, test_reflect_2)
self.assertRaises(Exception, test_reflect_3)
class TestPadDataformatError(unittest.TestCase):
def test_errors(self):
def test_ncl():
input_shape = (1, 2, 3, 4)
pad = paddle.to_tensor(np.array([2, 1, 2, 1]).astype('int32'))
data = np.arange(
np.prod(input_shape), dtype=np.float64).reshape(input_shape) + 1
my_pad = nn.Pad1D(padding=pad, mode="replicate", data_format="NCL")
data = paddle.to_tensor(data)
result = my_pad(data)
def test_nchw():
input_shape = (1, 2, 4)
pad = paddle.to_tensor(np.array([2, 1, 2, 1]).astype('int32'))
data = np.arange(
np.prod(input_shape), dtype=np.float64).reshape(input_shape) + 1
my_pad = nn.Pad1D(padding=pad, mode="replicate", data_format="NCHW")
data = paddle.to_tensor(data)
result = my_pad(data)
def test_ncdhw():
input_shape = (1, 2, 3, 4)
pad = paddle.to_tensor(np.array([2, 1, 2, 1]).astype('int32'))
data = np.arange(
np.prod(input_shape), dtype=np.float64).reshape(input_shape) + 1
my_pad = nn.Pad1D(
padding=pad, mode="replicate", data_format="NCDHW")
data = paddle.to_tensor(data)
result = my_pad(data)
self.assertRaises(AssertionError, test_ncl)
self.assertRaises(AssertionError, test_nchw)
self.assertRaises(AssertionError, test_ncdhw)
if __name__ == '__main__':
unittest.main()