You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/operators/gaussian_random_op.cc

84 lines
3.2 KiB

/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/gaussian_random_op.h"
8 years ago
#include "glog/logging.h"
8 years ago
#include "paddle/framework/op_registry.h"
namespace paddle {
namespace operators {
template <typename T>
class GaussianRandomOpKernel<platform::CPUPlace, T>
: public framework::OpKernel {
public:
void Compute(const framework::KernelContext& context) const override {
auto mean = context.op_.GetAttr<T>("mean");
auto std = context.op_.GetAttr<T>("std");
auto* output = context.Output(0)->GetMutable<framework::Tensor>();
T* r = output->mutable_data<T>(context.GetPlace());
auto ctx =
static_cast<const platform::CPUDeviceContext*>(context.device_context_);
// generator need to modify context
auto g = const_cast<platform::CPUDeviceContext*>(ctx)->RandGenerator();
std::normal_distribution<T> distribution(mean, std);
for (int i = 0; i < framework::product(output->dims()); ++i) {
r[i] = distribution(g);
}
}
};
class GaussianRandomOp : public framework::OperatorWithKernel {
protected:
8 years ago
void InferShape(
const std::vector<const framework::Tensor*>& inputs,
const std::vector<framework::Tensor*>& outputs) const override {
PADDLE_ENFORCE(inputs.size() == 0, "Input size of RandomOp must be zero.");
PADDLE_ENFORCE(outputs.size() == 1, "Output size of RandomOp must be one.");
8 years ago
PADDLE_ENFORCE(outputs[0] != nullptr,
"Outputs of RandomOp must all be set.");
outputs[0]->Resize(
framework::make_ddim(this->GetAttr<std::vector<int>>("shape")));
8 years ago
}
};
class GaussianRandomOpMaker : public framework::OpProtoAndCheckerMaker {
public:
GaussianRandomOpMaker(framework::OpProto* proto,
framework::OpAttrChecker* op_checker)
8 years ago
: framework::OpProtoAndCheckerMaker(proto, op_checker) {
AddAttr<std::vector<int>>("shape", "The shape of matrix to be randomized");
8 years ago
AddAttr<float>("mean", "mean value of random.").SetDefault(.0);
AddAttr<float>("std", "minimum value of random value")
.SetDefault(1.0)
.LargerThan(.0);
AddOutput("Out", "output matrix of random op");
AddComment(R"DOC(
GaussianRandom Operator fill a matrix in normal distribution.
The eqution : Out = GaussianRandom(Shape=(d0, d1, ...), Dtype, mean, std)
8 years ago
)DOC");
}
};
} // namespace operators
} // namespace paddle
REGISTER_OP(gaussian_random, paddle::operators::GaussianRandomOp,
paddle::operators::GaussianRandomOpMaker);
8 years ago
typedef paddle::operators::GaussianRandomOpKernel<paddle::platform::CPUPlace,
float>
GaussianRandomOpKernel_CPU_float;
REGISTER_OP_CPU_KERNEL(gaussian_random, GaussianRandomOpKernel_CPU_float);