|
|
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
you may not use this file except in compliance with the License.
|
|
|
|
You may obtain a copy of the License at
|
|
|
|
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
See the License for the specific language governing permissions and
|
|
|
|
limitations under the License. */
|
|
|
|
|
|
|
|
#pragma once
|
|
|
|
#include "paddle/memory/memcpy.h"
|
|
|
|
#include "paddle/platform/enforce.h"
|
|
|
|
|
|
|
|
namespace paddle {
|
|
|
|
namespace framework {
|
|
|
|
|
|
|
|
template <typename... T>
|
|
|
|
struct SizeOfTypeFunctor;
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
struct SizeOfTypeFunctor<T> {
|
|
|
|
size_t operator()(std::type_index type) const {
|
|
|
|
if (typeid(T).hash_code() == type.hash_code()) {
|
|
|
|
return sizeof(T);
|
|
|
|
} else {
|
|
|
|
return 0UL;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
template <>
|
|
|
|
struct SizeOfTypeFunctor<> {
|
|
|
|
size_t operator()(std::type_index type) const { return 0UL; }
|
|
|
|
};
|
|
|
|
|
|
|
|
template <typename HEAD, typename... TAIL>
|
|
|
|
struct SizeOfTypeFunctor<HEAD, TAIL...> {
|
|
|
|
size_t operator()(std::type_index type) const {
|
|
|
|
SizeOfTypeFunctor<HEAD> head;
|
|
|
|
size_t head_size = head(type);
|
|
|
|
if (head_size != 0) {
|
|
|
|
return head_size;
|
|
|
|
}
|
|
|
|
SizeOfTypeFunctor<TAIL...> tail;
|
|
|
|
return tail(type);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
static inline size_t SizeOfType(std::type_index type) {
|
|
|
|
SizeOfTypeFunctor<int, float, double, int16_t, int64_t> functor;
|
|
|
|
size_t size = functor(type);
|
|
|
|
PADDLE_ENFORCE(size != 0UL, "Cannot get size of type %s", type.name());
|
|
|
|
return size;
|
|
|
|
}
|
|
|
|
|
|
|
|
inline void Tensor::check_memory_size() const {
|
|
|
|
PADDLE_ENFORCE_NOT_NULL(
|
|
|
|
holder_, "Tensor holds no memory. Call Tensor::mutable_data first.");
|
|
|
|
PADDLE_ENFORCE_GE(
|
|
|
|
holder_->size(), memory_size() + offset_,
|
|
|
|
"Tensor's dims_ is out of bound. Call Tensor::mutable_data "
|
|
|
|
"first to re-allocate memory.\n"
|
|
|
|
"or maybe the required data-type mismatches the data already stored.");
|
|
|
|
}
|
|
|
|
|
|
|
|
inline size_t Tensor::memory_size() const {
|
|
|
|
return holder_ == nullptr ? 0UL : numel() * SizeOfType(type());
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
inline const T* Tensor::data() const {
|
|
|
|
check_memory_size();
|
|
|
|
PADDLE_ENFORCE(std::is_same<T, void>::value ||
|
|
|
|
holder_->type().hash_code() == typeid(T).hash_code(),
|
|
|
|
"Tensor holds the wrong type, it holds %s",
|
|
|
|
this->holder_->type().name());
|
|
|
|
|
|
|
|
return reinterpret_cast<const T*>(
|
|
|
|
reinterpret_cast<uintptr_t>(holder_->ptr()) + offset_);
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
inline T* Tensor::data() {
|
|
|
|
check_memory_size();
|
|
|
|
PADDLE_ENFORCE(std::is_same<T, void>::value ||
|
|
|
|
holder_->type().hash_code() == typeid(T).hash_code(),
|
|
|
|
"Tensor holds the wrong type, it holds %s",
|
|
|
|
this->holder_->type().name());
|
|
|
|
return reinterpret_cast<T*>(reinterpret_cast<uintptr_t>(holder_->ptr()) +
|
|
|
|
offset_);
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
inline T* Tensor::mutable_data(DDim dims, platform::Place place) {
|
|
|
|
static_assert(std::is_pod<T>::value, "T must be POD");
|
|
|
|
Resize(dims);
|
|
|
|
return mutable_data<T>(place);
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
inline T* Tensor::mutable_data(platform::Place place) {
|
|
|
|
static_assert(std::is_pod<T>::value, "T must be POD");
|
|
|
|
return reinterpret_cast<T*>(mutable_data(place, typeid(T)));
|
|
|
|
}
|
|
|
|
|
|
|
|
inline void* Tensor::mutable_data(platform::Place place, std::type_index type) {
|
|
|
|
if (holder_ != nullptr) {
|
|
|
|
holder_->set_type(type);
|
|
|
|
}
|
|
|
|
PADDLE_ENFORCE_GT(
|
|
|
|
numel(), 0,
|
|
|
|
"When calling this method, the Tensor's numel must be larger than zero. "
|
|
|
|
"Please check Tensor::Resize has been called first.");
|
|
|
|
int64_t size = numel() * SizeOfType(type);
|
|
|
|
/* some versions of boost::variant don't have operator!= */
|
|
|
|
if (holder_ == nullptr || !(holder_->place() == place) ||
|
|
|
|
holder_->size() < size + offset_) {
|
|
|
|
if (platform::is_cpu_place(place)) {
|
|
|
|
holder_.reset(new PlaceholderImpl<platform::CPUPlace>(
|
|
|
|
boost::get<platform::CPUPlace>(place), size, type));
|
|
|
|
} else if (platform::is_gpu_place(place)) {
|
|
|
|
#ifndef PADDLE_WITH_CUDA
|
|
|
|
PADDLE_THROW("'GPUPlace' is not supported in CPU only device.");
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
holder_.reset(new PlaceholderImpl<platform::GPUPlace>(
|
|
|
|
boost::get<platform::GPUPlace>(place), size, type));
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
offset_ = 0;
|
|
|
|
}
|
|
|
|
return reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(holder_->ptr()) +
|
|
|
|
offset_);
|
|
|
|
}
|
|
|
|
|
|
|
|
inline void* Tensor::mutable_data(platform::Place place) {
|
|
|
|
PADDLE_ENFORCE(this->holder_ != nullptr,
|
|
|
|
"Cannot invoke mutable data if current hold nothing");
|
|
|
|
return mutable_data(place, holder_->type());
|
|
|
|
}
|
|
|
|
|
|
|
|
inline Tensor& Tensor::ShareDataWith(const Tensor& src) {
|
|
|
|
src.check_memory_size();
|
|
|
|
*this = src;
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
inline void Tensor::CopyFrom(const Tensor& src,
|
|
|
|
const platform::Place& dst_place,
|
|
|
|
const platform::DeviceContext& ctx) {
|
|
|
|
src.check_memory_size();
|
|
|
|
Resize(src.dims());
|
|
|
|
|
|
|
|
auto src_place = src.holder_->place();
|
|
|
|
auto src_ptr = src.data<void>();
|
|
|
|
|
|
|
|
auto dst_ptr = mutable_data(dst_place, src.type());
|
|
|
|
|
|
|
|
auto size = src.numel() * SizeOfType(src.type());
|
|
|
|
|
|
|
|
if (platform::is_cpu_place(src_place) && platform::is_cpu_place(dst_place)) {
|
|
|
|
memory::Copy(boost::get<platform::CPUPlace>(dst_place), dst_ptr,
|
|
|
|
boost::get<platform::CPUPlace>(src_place), src_ptr, size);
|
|
|
|
}
|
|
|
|
#ifdef PADDLE_WITH_CUDA
|
|
|
|
else if (platform::is_gpu_place(src_place) &&
|
|
|
|
platform::is_cpu_place(dst_place)) {
|
|
|
|
auto src_gpu_place = boost::get<platform::GPUPlace>(src_place);
|
|
|
|
auto dst_cpu_place = boost::get<platform::CPUPlace>(dst_place);
|
|
|
|
auto ctx_place = ctx.GetPlace();
|
|
|
|
PADDLE_ENFORCE(platform::is_gpu_place(ctx_place));
|
|
|
|
auto ctx_gpu_place = boost::get<platform::GPUPlace>(ctx_place);
|
|
|
|
PADDLE_ENFORCE_EQ(src_gpu_place, ctx_gpu_place);
|
|
|
|
memory::Copy(
|
|
|
|
dst_cpu_place, dst_ptr, src_gpu_place, src_ptr, size,
|
|
|
|
reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream());
|
|
|
|
} else if (platform::is_cpu_place(src_place) &&
|
|
|
|
platform::is_gpu_place(dst_place)) {
|
|
|
|
auto src_cpu_place = boost::get<platform::CPUPlace>(src_place);
|
|
|
|
auto dst_gpu_place = boost::get<platform::GPUPlace>(dst_place);
|
|
|
|
auto ctx_place = ctx.GetPlace();
|
|
|
|
PADDLE_ENFORCE(platform::is_gpu_place(ctx_place));
|
|
|
|
auto ctx_gpu_place = boost::get<platform::GPUPlace>(ctx_place);
|
|
|
|
PADDLE_ENFORCE_EQ(dst_gpu_place, ctx_gpu_place);
|
|
|
|
memory::Copy(
|
|
|
|
dst_gpu_place, dst_ptr, src_cpu_place, src_ptr, size,
|
|
|
|
reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream());
|
|
|
|
} else if (platform::is_gpu_place(src_place) &&
|
|
|
|
platform::is_gpu_place(dst_place)) {
|
|
|
|
auto src_gpu_place = boost::get<platform::GPUPlace>(src_place);
|
|
|
|
auto dst_gpu_place = boost::get<platform::GPUPlace>(dst_place);
|
|
|
|
auto ctx_place = ctx.GetPlace();
|
|
|
|
PADDLE_ENFORCE(platform::is_gpu_place(ctx_place));
|
|
|
|
auto ctx_gpu_place = boost::get<platform::GPUPlace>(ctx_place);
|
|
|
|
PADDLE_ENFORCE_EQ(src_gpu_place, ctx_gpu_place);
|
|
|
|
memory::Copy(
|
|
|
|
dst_gpu_place, dst_ptr, src_gpu_place, src_ptr, size,
|
|
|
|
reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream());
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
inline void Tensor::CopyFromVector(const std::vector<T>& src,
|
|
|
|
const platform::DeviceContext& ctx) {
|
|
|
|
auto dst_place = ctx.GetPlace();
|
|
|
|
auto src_ptr = static_cast<const void*>(src.data());
|
|
|
|
platform::CPUPlace src_place;
|
|
|
|
auto dst_ptr = static_cast<void*>(mutable_data<T>(dst_place));
|
|
|
|
auto size = src.size() * sizeof(T);
|
|
|
|
|
|
|
|
if (platform::is_cpu_place(dst_place)) {
|
|
|
|
memory::Copy(boost::get<platform::CPUPlace>(dst_place), dst_ptr, src_place,
|
|
|
|
src_ptr, size);
|
|
|
|
}
|
|
|
|
#ifdef PADDLE_WITH_CUDA
|
|
|
|
else if (platform::is_gpu_place(dst_place)) {
|
|
|
|
memory::Copy(
|
|
|
|
boost::get<platform::GPUPlace>(dst_place), dst_ptr, src_place, src_ptr,
|
|
|
|
size,
|
|
|
|
reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream());
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
inline Tensor Tensor::Slice(int begin_idx, int end_idx) const {
|
|
|
|
check_memory_size();
|
|
|
|
PADDLE_ENFORCE_GE(begin_idx, 0,
|
|
|
|
"The start row index must be greater than 0.");
|
|
|
|
PADDLE_ENFORCE_LE(end_idx, dims_[0], "The end row index is out of bound.");
|
|
|
|
PADDLE_ENFORCE_LT(
|
|
|
|
begin_idx, end_idx,
|
|
|
|
"The start row index must be lesser than the end row index.");
|
|
|
|
|
|
|
|
if (dims_[0] == 1) {
|
|
|
|
return *this;
|
|
|
|
} else {
|
|
|
|
size_t base = numel() / dims_[0];
|
|
|
|
Tensor dst;
|
|
|
|
dst.holder_ = holder_;
|
|
|
|
DDim dst_dims = dims_;
|
|
|
|
dst_dims[0] = end_idx - begin_idx;
|
|
|
|
dst.Resize(dst_dims);
|
|
|
|
dst.offset_ = offset_ + begin_idx * base * SizeOfType(type());
|
|
|
|
return dst;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
inline Tensor& Tensor::Resize(const DDim& dims) {
|
|
|
|
dims_ = dims;
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
inline const DDim& Tensor::dims() const { return dims_; }
|
|
|
|
|
|
|
|
inline int64_t Tensor::numel() const { return product(dims_); }
|
|
|
|
|
|
|
|
inline Tensor ReshapeToMatrix(const Tensor& src, int num_col_dims) {
|
|
|
|
Tensor res;
|
|
|
|
res.ShareDataWith(src);
|
|
|
|
res.Resize(flatten_to_2d(src.dims(), num_col_dims));
|
|
|
|
return res;
|
|
|
|
}
|
|
|
|
|
|
|
|
} // namespace framework
|
|
|
|
} // namespace paddle
|