You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
63 lines
1.9 KiB
63 lines
1.9 KiB
6 years ago
|
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
||
|
|
||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
you may not use this file except in compliance with the License.
|
||
|
You may obtain a copy of the License at
|
||
|
|
||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||
|
|
||
|
Unless required by applicable law or agreed to in writing, software
|
||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
See the License for the specific language governing permissions and
|
||
|
limitations under the License. */
|
||
|
|
||
|
#include <gflags/gflags.h>
|
||
|
#include <glog/logging.h>
|
||
|
#include <gtest/gtest.h>
|
||
|
|
||
|
#include "paddle/fluid/inference/tests/api/trt_test_helper.h"
|
||
|
|
||
|
namespace paddle {
|
||
|
namespace inference {
|
||
|
|
||
|
TEST(TensorRT, cascade_rcnn) {
|
||
|
std::string model_dir = FLAGS_infer_model + "/cascade_rcnn";
|
||
|
AnalysisConfig config;
|
||
|
int batch_size = 1;
|
||
|
config.EnableUseGpu(100, 0);
|
||
|
config.SetModel(model_dir + "/model", model_dir + "/params");
|
||
|
config.SwitchUseFeedFetchOps(false);
|
||
|
config.EnableTensorRtEngine(1 << 30, batch_size, 40,
|
||
|
AnalysisConfig::Precision::kFloat32, false);
|
||
|
|
||
|
auto predictor = CreatePaddlePredictor(config);
|
||
|
|
||
|
int channels = 3;
|
||
|
int height = 640;
|
||
|
int width = 640;
|
||
|
int input_num = batch_size * channels * height * width;
|
||
|
float *input = new float[input_num];
|
||
|
memset(input, 1.0, input_num * sizeof(float));
|
||
|
|
||
|
float *im_shape = new float[3];
|
||
|
im_shape[0] = 3.0;
|
||
|
im_shape[1] = 640.0;
|
||
|
im_shape[2] = 640.0;
|
||
|
|
||
|
auto input_names = predictor->GetInputNames();
|
||
|
|
||
|
auto input_t = predictor->GetInputTensor(input_names[0]);
|
||
|
input_t->Reshape({batch_size, channels, height, width});
|
||
|
input_t->copy_from_cpu(input);
|
||
|
|
||
|
auto input_t1 = predictor->GetInputTensor(input_names[1]);
|
||
|
input_t1->Reshape({batch_size, 3});
|
||
|
input_t1->copy_from_cpu(im_shape);
|
||
|
|
||
|
ASSERT_TRUE(predictor->ZeroCopyRun());
|
||
|
}
|
||
|
|
||
|
} // namespace inference
|
||
|
} // namespace paddle
|