You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
103 lines
3.4 KiB
103 lines
3.4 KiB
5 years ago
|
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
you may not use this file except in compliance with the License.
|
||
|
You may obtain a copy of the License at
|
||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||
|
Unless required by applicable law or agreed to in writing, software
|
||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
See the License for the specific language governing permissions and
|
||
|
limitations under the License. */
|
||
|
|
||
|
#pragma once
|
||
|
|
||
|
#include <string>
|
||
|
#include <utility>
|
||
|
#include <vector>
|
||
|
#include "paddle/fluid/framework/op_registry.h"
|
||
|
|
||
|
namespace paddle {
|
||
|
namespace operators {
|
||
|
|
||
|
using Tensor = framework::Tensor;
|
||
|
|
||
|
template <typename DeviceContext, typename T>
|
||
|
class PartialSumKernel : public framework::OpKernel<T> {
|
||
|
public:
|
||
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
||
|
auto ins = ctx.MultiInput<Tensor>("X");
|
||
|
Tensor* out = ctx.Output<Tensor>("Out");
|
||
|
PADDLE_ENFORCE_EQ(
|
||
|
ins[0] != nullptr, true,
|
||
|
platform::errors::InvalidArgument("The input should not be null."));
|
||
|
|
||
|
auto place = ctx.GetPlace(); // CPUPlace only now
|
||
|
|
||
|
auto* out_t = out->mutable_data<T>(place);
|
||
|
auto start_index = ctx.Attr<int>("start_index");
|
||
|
auto length = ctx.Attr<int>("length");
|
||
|
auto batch_size = ins[0]->dims()[0];
|
||
|
if (length == -1) {
|
||
|
length = ins[0]->dims()[1] - start_index;
|
||
|
}
|
||
|
|
||
|
memset(out_t, 0, sizeof(T) * batch_size * length);
|
||
|
|
||
|
for (size_t i = 0; i < ins.size(); ++i) {
|
||
|
auto* in_t = ins[i]->data<T>();
|
||
|
auto total_len = ins[i]->dims()[1];
|
||
|
for (auto bs_id = 0; bs_id < batch_size; ++bs_id) {
|
||
|
for (auto k = 0; k < length; ++k) {
|
||
|
out_t[bs_id * length + k] +=
|
||
|
in_t[bs_id * total_len + start_index + k];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template <typename T>
|
||
|
class PartialSumGradientOpKernel : public framework::OpKernel<T> {
|
||
|
public:
|
||
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
||
|
auto* out_grad = ctx.Input<Tensor>(framework::GradVarName("Out"));
|
||
|
auto ins = ctx.MultiInput<framework::LoDTensor>("X");
|
||
|
auto outs =
|
||
|
ctx.MultiOutput<framework::LoDTensor>(framework::GradVarName("X"));
|
||
|
|
||
|
PADDLE_ENFORCE_EQ(
|
||
|
ins[0] != nullptr, true,
|
||
|
platform::errors::InvalidArgument("The input should not be null."));
|
||
|
auto start_index = ctx.Attr<int>("start_index");
|
||
|
auto length = ctx.Attr<int>("length");
|
||
|
auto batch_size = ins[0]->dims()[0];
|
||
|
if (length == -1) {
|
||
|
length = ins[0]->dims()[1] - start_index;
|
||
|
}
|
||
|
|
||
|
// initialize
|
||
|
auto& place = *ctx.template device_context<platform::CPUDeviceContext>()
|
||
|
.eigen_device();
|
||
|
for (size_t i = 0; i < outs.size(); ++i) {
|
||
|
outs[i]->mutable_data<T>(ctx.GetPlace());
|
||
|
auto dxt = framework::EigenVector<T>::Flatten(*outs[i]);
|
||
|
dxt.device(place) = dxt.constant(static_cast<T>(0));
|
||
|
}
|
||
|
|
||
|
auto* out_grad_t = out_grad->data<T>();
|
||
|
for (size_t i = 0; i < outs.size(); ++i) {
|
||
|
auto* out_t = outs[i]->data<T>();
|
||
|
auto total_len = ins[i]->dims()[1];
|
||
|
for (auto bs_id = 0; bs_id < batch_size; ++bs_id) {
|
||
|
for (int len = 0; len < length; ++len) {
|
||
|
out_t[start_index + bs_id * total_len + len] =
|
||
|
out_grad_t[bs_id * length + len] * static_cast<T>(1);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
};
|
||
|
|
||
|
} // namespace operators
|
||
|
} // namespace paddle
|