You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/operators/reduce_ops/reduce_sum_op.h

120 lines
4.1 KiB

// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
7 years ago
#include <vector>
#include "paddle/fluid/operators/reduce_ops/reduce_op.h"
namespace paddle {
namespace operators {
7 years ago
// use for loop to speed up Eigen broadcast. 4 timer faster then broadcast
template <typename DeviceContext, typename T, typename Functor,
bool kNoNeedBufferX = false>
7 years ago
class ReduceSumGradKernel : public framework::OpKernel<T> {
public:
void ComputeFromInput(const Tensor* input2,
const framework::ExecutionContext& context) const {
7 years ago
auto dims = context.Attr<std::vector<int>>("dim");
auto* input0 = context.Input<Tensor>("X");
7 years ago
auto* output = context.Output<Tensor>(framework::GradVarName("X"));
output->mutable_data<T>(context.GetPlace());
const auto* input2_d = input2->data<T>();
auto* output_d = output->data<T>();
7 years ago
// handle reduce_all
if (input2->dims().size() == 1 && input2->dims()[0] == 1) {
for (int64_t i = 0; i < framework::product(input0->dims()); ++i) {
output_d[i] = input2_d[0];
7 years ago
}
return;
}
7 years ago
// handle reduce by one dimension
int reduce_dim_index = dims[0];
if (reduce_dim_index < 0) {
reduce_dim_index += input0->dims().size();
}
auto& input_dim = input0->dims();
int64_t before_dim = 1;
for (int i = 0; i < reduce_dim_index; ++i) {
before_dim *= input_dim[i];
}
int64_t reduce_dim = input_dim[reduce_dim_index];
int64_t after_dim = 1;
for (int i = reduce_dim_index + 1; i < input_dim.size(); ++i) {
after_dim *= input_dim[i];
}
for (int64_t i = 0; i < before_dim; ++i) {
for (int64_t j = 0; j < reduce_dim; ++j) {
for (int64_t k = 0; k < after_dim; ++k) {
output_d[i * reduce_dim * after_dim + j * after_dim + k] =
input2_d[i * after_dim + k];
7 years ago
}
}
}
}
7 years ago
void Compute(const framework::ExecutionContext& context) const override {
auto dims = context.Attr<std::vector<int>>("dim");
if (context.GetPlace().type() == typeid(platform::CPUPlace) &&
dims.size() == 1) {
int in_dtype = context.Attr<int>("in_dtype");
if (in_dtype >= 0) {
Tensor tmp_tensor;
auto* pre_input = context.Input<Tensor>(framework::GradVarName("Out"));
auto in_kernel_type =
framework::OpKernelType(pre_input->type(), context.GetPlace());
auto out_kernel_type = framework::OpKernelType(
static_cast<framework::proto::VarType::Type>(in_dtype),
context.GetPlace());
framework::TransDataType(in_kernel_type, out_kernel_type, *pre_input,
&tmp_tensor);
ComputeFromInput(&tmp_tensor, context);
} else {
auto* input2 = context.Input<Tensor>(framework::GradVarName("Out"));
ComputeFromInput(input2, context);
}
return;
}
7 years ago
// default use Eigen broadcast
ReduceGradKernel<DeviceContext, T, Functor, kNoNeedBufferX> kernel;
7 years ago
kernel.Compute(context);
}
};
struct SumFunctor {
template <typename DeviceContext, typename X, typename Y, typename Dim>
void operator()(const DeviceContext& place, X* x, Y* y, const Dim& dim) {
y->device(place) = x->sum(dim);
}
};
struct SumGradFunctor {
template <typename DeviceContext, typename X, typename Y, typename DX,
typename DY, typename Dim>
void operator()(const DeviceContext& place, X* x, Y* y, DX* dx, DY* dy,
const Dim& dim, int size) {
dx->device(place) = dy->broadcast(dim);
}
};
} // namespace operators
} // namespace paddle