You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/operators/math/concat_test.cc

396 lines
11 KiB

7 years ago
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <gtest/gtest.h>
#include <vector>
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/operators/math/concat_and_split.h"
7 years ago
/**
* case 1:
* inputs:
* t_a.shape: [2, 3, 4]
* t_b.shape: [3, 3, 4]
* output:
* out.shape: [5, 3, 4]
*/
7 years ago
template <typename DeviceContext, typename Place>
void ConcatCase1(DeviceContext* context) {
paddle::framework::Tensor input_a_cpu;
paddle::framework::Tensor input_b_cpu;
paddle::framework::Tensor out_cpu;
paddle::framework::Tensor input_a;
paddle::framework::Tensor input_b;
paddle::framework::Tensor out;
7 years ago
auto dim_a = paddle::framework::make_ddim({2, 3, 4});
auto dim_b = paddle::framework::make_ddim({3, 3, 4});
auto dim_out = paddle::framework::make_ddim({5, 3, 4});
7 years ago
input_a.mutable_data<int>(dim_a, Place());
input_b.mutable_data<int>(dim_b, Place());
out.mutable_data<int>(dim_out, Place());
if (paddle::platform::is_gpu_place(Place())) {
input_a_cpu.mutable_data<int>(dim_a, paddle::platform::CPUPlace());
input_b_cpu.mutable_data<int>(dim_b, paddle::platform::CPUPlace());
out_cpu.mutable_data<int>(dim_out, paddle::platform::CPUPlace());
7 years ago
}
int* a_ptr = nullptr;
int* b_ptr = nullptr;
7 years ago
if (paddle::platform::is_gpu_place(Place())) {
a_ptr = input_a_cpu.data<int>();
b_ptr = input_b_cpu.data<int>();
} else {
a_ptr = input_a.data<int>();
b_ptr = input_b.data<int>();
}
for (int i = 0; i < 2 * 3 * 4; ++i) {
a_ptr[i] = i;
}
for (int i = 0; i < 3 * 3 * 4; ++i) {
b_ptr[i] = i;
}
if (paddle::platform::is_gpu_place(Place())) {
paddle::framework::TensorCopySync(input_a_cpu, Place(), &input_a);
paddle::framework::TensorCopySync(input_b_cpu, Place(), &input_b);
7 years ago
}
std::vector<paddle::framework::Tensor> input;
7 years ago
input.push_back(input_a);
input.push_back(input_b);
paddle::operators::math::ConcatFunctor<DeviceContext, int> concat_functor;
concat_functor(*context, input, 0, &out);
// check the dim of input_a, input_b
PADDLE_ENFORCE_EQ(input_a.dims(), dim_a);
PADDLE_ENFORCE_EQ(input_b.dims(), dim_b);
int* out_ptr = nullptr;
7 years ago
if (paddle::platform::is_gpu_place(Place())) {
paddle::framework::TensorCopySync(out, paddle::platform::CPUPlace(),
&out_cpu);
7 years ago
out_ptr = out_cpu.data<int>();
} else {
out_ptr = out.data<int>();
}
int cols = 2 * 3 * 4;
int idx_a = 0, idx_b = 0;
for (int j = 0; j < 5 * 3 * 4; ++j) {
if (j >= cols) {
PADDLE_ENFORCE_EQ(out_ptr[j], b_ptr[idx_b]);
++idx_b;
} else {
PADDLE_ENFORCE_EQ(out_ptr[j], a_ptr[idx_a]);
++idx_a;
}
}
}
/**
* case 2:
* inputs:
* t_a.shape: [2, 3, 4]
* t_b.shape: [2, 4, 4]
* output:
* out.shape: [2, 7, 4]
*/
template <typename DeviceContext, typename Place>
void ConcatCase2(DeviceContext* context) {
paddle::framework::Tensor input_a_cpu;
paddle::framework::Tensor input_b_cpu;
paddle::framework::Tensor out_cpu;
paddle::framework::Tensor input_a;
paddle::framework::Tensor input_b;
paddle::framework::Tensor out;
auto dim_a = paddle::framework::make_ddim({2, 3, 4});
auto dim_b = paddle::framework::make_ddim({2, 4, 4});
auto dim_out = paddle::framework::make_ddim({2, 7, 4});
input_a.mutable_data<int>(dim_a, Place());
input_b.mutable_data<int>(dim_b, Place());
out.mutable_data<int>(dim_out, Place());
7 years ago
if (paddle::platform::is_gpu_place(Place())) {
input_a_cpu.mutable_data<int>(dim_a, paddle::platform::CPUPlace());
input_b_cpu.mutable_data<int>(dim_b, paddle::platform::CPUPlace());
out_cpu.mutable_data<int>(dim_out, paddle::platform::CPUPlace());
7 years ago
}
int* a_ptr = nullptr;
int* b_ptr = nullptr;
7 years ago
if (paddle::platform::is_gpu_place(Place())) {
a_ptr = input_a_cpu.data<int>();
b_ptr = input_b_cpu.data<int>();
} else {
a_ptr = input_a.data<int>();
b_ptr = input_b.data<int>();
}
for (int i = 0; i < 2 * 3 * 4; ++i) {
a_ptr[i] = i;
}
for (int i = 0; i < 2 * 4 * 4; ++i) {
b_ptr[i] = i;
}
if (paddle::platform::is_gpu_place(Place())) {
paddle::framework::TensorCopySync(input_a_cpu, Place(), &input_a);
paddle::framework::TensorCopySync(input_b_cpu, Place(), &input_b);
7 years ago
}
std::vector<paddle::framework::Tensor> input;
7 years ago
input.push_back(input_a);
input.push_back(input_b);
paddle::operators::math::ConcatFunctor<DeviceContext, int> concat_functor;
7 years ago
concat_functor(*context, input, 1, &out);
// check the dim of input_a, input_b
PADDLE_ENFORCE_EQ(input_a.dims(), dim_a);
PADDLE_ENFORCE_EQ(input_b.dims(), dim_b);
int* out_ptr = nullptr;
7 years ago
if (paddle::platform::is_gpu_place(Place())) {
paddle::framework::TensorCopySync(out, paddle::platform::CPUPlace(),
&out_cpu);
7 years ago
out_ptr = out_cpu.data<int>();
} else {
out_ptr = out.data<int>();
}
int cols = 3 * 4;
int idx_a = 0, idx_b = 0;
7 years ago
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 28; ++j) {
if (j >= cols) {
PADDLE_ENFORCE_EQ(out_ptr[i * 28 + j], b_ptr[idx_b]);
++idx_b;
} else {
PADDLE_ENFORCE_EQ(out_ptr[i * 28 + j], a_ptr[idx_a]);
++idx_a;
}
}
}
}
/**
* case 3:
* inputs:
* t_a.shape: [2, 3, 5]
* t_b.shape: [2, 3, 4]
* output:
* out.shape: [2, 3, 9]
*/
template <typename DeviceContext, typename Place>
void ConcatCase3(DeviceContext* context) {
paddle::framework::Tensor input_a_cpu;
paddle::framework::Tensor input_b_cpu;
paddle::framework::Tensor out_cpu;
paddle::framework::Tensor input_a;
paddle::framework::Tensor input_b;
paddle::framework::Tensor out;
auto dim_a = paddle::framework::make_ddim({2, 3, 4});
auto dim_b = paddle::framework::make_ddim({2, 3, 5});
auto dim_out = paddle::framework::make_ddim({2, 3, 9});
input_a.mutable_data<int>(dim_a, Place());
input_b.mutable_data<int>(dim_b, Place());
out.mutable_data<int>(dim_out, Place());
7 years ago
if (paddle::platform::is_gpu_place(Place())) {
input_a_cpu.mutable_data<int>(dim_a, paddle::platform::CPUPlace());
input_b_cpu.mutable_data<int>(dim_b, paddle::platform::CPUPlace());
out_cpu.mutable_data<int>(dim_out, paddle::platform::CPUPlace());
7 years ago
}
int* a_ptr = nullptr;
int* b_ptr = nullptr;
7 years ago
if (paddle::platform::is_gpu_place(Place())) {
a_ptr = input_a_cpu.data<int>();
b_ptr = input_b_cpu.data<int>();
} else {
a_ptr = input_a.data<int>();
b_ptr = input_b.data<int>();
}
for (int i = 0; i < 2 * 3 * 4; ++i) {
a_ptr[i] = i;
}
for (int i = 0; i < 2 * 3 * 5; ++i) {
b_ptr[i] = i;
}
if (paddle::platform::is_gpu_place(Place())) {
paddle::framework::TensorCopySync(input_a_cpu, Place(), &input_a);
paddle::framework::TensorCopySync(input_b_cpu, Place(), &input_b);
7 years ago
}
std::vector<paddle::framework::Tensor> input;
7 years ago
input.push_back(input_a);
input.push_back(input_b);
paddle::operators::math::ConcatFunctor<DeviceContext, int> concat_functor;
7 years ago
concat_functor(*context, input, 2, &out);
// check the dim of input_a, input_b
PADDLE_ENFORCE_EQ(input_a.dims(), dim_a);
PADDLE_ENFORCE_EQ(input_b.dims(), dim_b);
int* out_ptr = nullptr;
7 years ago
if (paddle::platform::is_gpu_place(Place())) {
paddle::framework::TensorCopySync(out, paddle::platform::CPUPlace(),
&out_cpu);
7 years ago
out_ptr = out_cpu.data<int>();
} else {
out_ptr = out.data<int>();
}
// check the data
int cols = 4;
int idx_a = 0, idx_b = 0;
7 years ago
for (int i = 0; i < 6; ++i) {
for (int j = 0; j < 9; ++j) {
if (j >= cols) {
PADDLE_ENFORCE_EQ(out_ptr[i * 9 + j], b_ptr[idx_b]);
++idx_b;
} else {
PADDLE_ENFORCE_EQ(out_ptr[i * 9 + j], a_ptr[idx_a]);
++idx_a;
}
}
}
}
/**
* case 4:
* inputs:
* axis = 1
* t_a.shape: [2, 3, 4]
* t_b.shape: [2, 3, 4]
* output:
* out.shape: [2, 6, 4]
*/
template <typename DeviceContext, typename Place>
void ConcatCase4(DeviceContext* context) {
paddle::framework::Tensor input_a_cpu;
paddle::framework::Tensor input_b_cpu;
paddle::framework::Tensor out_cpu;
paddle::framework::Tensor input_a;
paddle::framework::Tensor input_b;
paddle::framework::Tensor out;
auto dim_a = paddle::framework::make_ddim({2, 3, 4});
auto dim_b = paddle::framework::make_ddim({2, 3, 4});
auto dim_out = paddle::framework::make_ddim({2, 6, 4});
input_a.mutable_data<int>(dim_a, Place());
input_b.mutable_data<int>(dim_b, Place());
out.mutable_data<int>(dim_out, Place());
if (paddle::platform::is_gpu_place(Place())) {
input_a_cpu.mutable_data<int>(dim_a, paddle::platform::CPUPlace());
input_b_cpu.mutable_data<int>(dim_b, paddle::platform::CPUPlace());
out_cpu.mutable_data<int>(dim_out, paddle::platform::CPUPlace());
}
int* a_ptr = nullptr;
int* b_ptr = nullptr;
if (paddle::platform::is_gpu_place(Place())) {
a_ptr = input_a_cpu.data<int>();
b_ptr = input_b_cpu.data<int>();
} else {
a_ptr = input_a.data<int>();
b_ptr = input_b.data<int>();
}
for (int i = 0; i < 2 * 3 * 4; ++i) {
a_ptr[i] = i;
}
for (int i = 0; i < 2 * 3 * 4; ++i) {
b_ptr[i] = i;
}
if (paddle::platform::is_gpu_place(Place())) {
paddle::framework::TensorCopySync(input_a_cpu, Place(), &input_a);
paddle::framework::TensorCopySync(input_b_cpu, Place(), &input_b);
}
std::vector<paddle::framework::Tensor> input;
input.push_back(input_a);
input.push_back(input_b);
paddle::operators::math::ConcatFunctor<DeviceContext, int> concat_functor;
concat_functor(*context, input, 1, &out);
context->Wait();
// check the dim of input_a, input_b
PADDLE_ENFORCE_EQ(input_a.dims(), dim_a);
PADDLE_ENFORCE_EQ(input_b.dims(), dim_b);
int* out_ptr = nullptr;
if (paddle::platform::is_gpu_place(Place())) {
paddle::framework::TensorCopySync(out, paddle::platform::CPUPlace(),
&out_cpu);
out_ptr = out_cpu.data<int>();
} else {
out_ptr = out.data<int>();
}
// check the data
int cols = 12;
int idx_a = 0, idx_b = 0;
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 24; ++j) {
if (j >= cols) {
PADDLE_ENFORCE_EQ(out_ptr[i * 24 + j], b_ptr[idx_b]);
++idx_b;
} else {
PADDLE_ENFORCE_EQ(out_ptr[i * 24 + j], a_ptr[idx_a]);
++idx_a;
}
}
}
7 years ago
}
template <typename DeviceContext, typename Place>
void TestConcatMain() {
DeviceContext* context = new DeviceContext(Place());
ConcatCase1<DeviceContext, Place>(context);
ConcatCase2<DeviceContext, Place>(context);
ConcatCase3<DeviceContext, Place>(context);
ConcatCase4<DeviceContext, Place>(context);
}
7 years ago
TEST(math, concat) {
TestConcatMain<paddle::platform::CPUDeviceContext,
paddle::platform::CPUPlace>();
7 years ago
#ifdef PADDLE_WITH_CUDA
TestConcatMain<paddle::platform::CUDADeviceContext,
paddle::platform::CUDAPlace>();
7 years ago
#endif
}