You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/executor.py

332 lines
12 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
7 years ago
import contextlib
from framework import Program, default_main_program, Variable
from . import core
__all__ = [
'Executor', 'global_scope', 'scope_guard', 'switch_scope', 'fetch_var'
]
g_scope = core.Scope()
7 years ago
def global_scope():
return g_scope
def switch_scope(scope):
global g_scope
ex = g_scope
g_scope = scope
return ex
@contextlib.contextmanager
def scope_guard(scope):
ex = switch_scope(scope)
yield
switch_scope(ex)
def as_numpy(tensor):
if isinstance(tensor, list):
return [as_numpy(t) for t in tensor]
assert isinstance(tensor, core.LoDTensor)
lod = tensor.lod()
if len(lod) > 0:
raise RuntimeError(
"Some of your featched tensors hold LoD information. \
They can not be completely cast to Python ndarray. \
Please set the parameter 'return_numpy' as 'False' to \
return LoDTensor itself directly.")
return np.array(tensor)
def has_feed_operators(block, feed_targets, feed_holder_name):
""" Check whether the block already has feed operators.
Return false if the block does not have any feed operators.
If some feed operators have been prepended to the block, check that
the info contained in these feed operators matches the feed_targets
and feed_holder_name. Raise exception when any mismatch is found.
Return true when the block has feed operators with matching info.
Args:
block: a block instance (typically global block of a program)
feed_targets: a dictionary of {feed_target_name: feed_target_data}
feed_holder_name: the name of the variable that holds the data of
all feed targets. The type of this feed_holder variable is
FEED_MINIBATCH, which is essentially vector<LoDTensor>.
Returns:
A boolean value that indicates whether a block has feed operators
that match the info contained in feed_targets and feed_holder_name.
"""
feed_count = 0
for op in block.ops:
if op.desc.type() == 'feed':
feed_count += 1
assert op.desc.input('X')[0] == feed_holder_name
feed_target_name = op.desc.output('Out')[0]
if feed_target_name not in feed_targets:
raise Exception("'feed_targets' does not have {} variable".
format(feed_target_name))
else:
break
if feed_count > 0 and feed_count != len(feed_targets):
raise Exception(
"Feed operators in program desc do not match 'feed_targets'")
return feed_count > 0
def has_fetch_operators(block, fetch_targets, fetch_holder_name):
""" Check whether the block already has fetch operators.
Return false if the block does not have any fetch operators.
If some fetch operators have been appended to the block, check that
the info contained in these fetch operators matches the fetch_targets
and fetch_holder_name. Raise exception when any mismatch is found.
Return true when the block has fetch operators with matching info.
Args:
block: a block instance (typically global block of a program)
fetch_targets: a dictionary of {fetch_target_name: fetch_target_data}
fetch_holder_name: the name of the variable that holds the data of
all fetch targets. The type of this fetch_holder variable is
FETCH_LIST, which is essentially vector<LoDTensor>.
Return:
A boolean value that indicates whether a block has fetch operators
that match the info contained in fetch_targets and fetch_holder_name.
"""
fetch_count = 0
for op in block.ops:
if op.desc.type() == 'fetch':
fetch_count += 1
assert op.desc.output('Out')[0] == fetch_holder_name
fetch_target_name = op.desc.input('X')[0]
if fetch_target_name not in [
var.desc.name() for var in fetch_targets
]:
raise Exception("'fetch_targets' does not have {} variable".
format(fetch_target_name))
idx = op.desc.attr('col')
assert fetch_target_name == fetch_targets[idx].desc.name()
if fetch_count > 0 and fetch_count != len(fetch_targets):
raise Exception(
"Fetch operators in program desc do not match 'fetch_targets'")
return fetch_count > 0
def fetch_var(name, scope=None, return_numpy=True):
"""
Fetch the value of the variable with the given name from the given scope
Args:
name(str): name of the variable. Typically, only persistable variables
can be found in the scope used for running the program.
scope(core.Scope|None): scope object. It should be the scope where
you pass to Executor.run() when running your program.
If None, global_scope() will be used.
return_numpy(bool): whether convert the tensor to numpy.ndarray
Returns:
LodTensor|numpy.ndarray
"""
assert isinstance(name, str)
if scope is None:
scope = global_scope()
assert isinstance(scope, core.Scope)
var = global_scope().find_var(name)
assert var is not None, (
"Cannot find " + name + " in scope. Perhaps you need to make the"
" variable persistable by using var.persistable = True in your"
" program.")
tensor = var.get_tensor()
if return_numpy:
tensor = as_numpy(tensor)
return tensor
class Executor(object):
def __init__(self, places):
if not isinstance(places, list) and not isinstance(places, tuple):
places = [places]
act_places = []
for each in places:
p = core.Place()
p.set_place(each)
act_places.append(p)
# TODO(dzhwinter) : only use the first place
self.executor = core.Executor(act_places[0])
self.places = places
self.program_caches = dict()
def aslodtensor(self, data):
def accumulate(data):
if not isinstance(data, list):
return 1
return sum([accumulate(sub) for sub in data])
def parselod(data):
seq_lens = [accumulate(seq) for seq in data]
cur_len = 0
lod = [cur_len]
for l in seq_lens:
cur_len += l
lod.append(cur_len)
return lod
assert len(self.places) != 0
if not isinstance(data, list):
# pure tensor case
tensor = core.LoDTensor()
tensor.set(data, self.places[0])
return tensor
else:
raise RuntimeError("Current implementation lacks unittests")
# lodtensor case
lod = []
if not isinstance(data[0], list):
lod.append(parselod(data))
flattened_data = np.concatenate(data, axis=0).astype("int64")
else:
while isinstance(data[0], list):
lod.append(parselod(seq))
flattened_data = [item for seq in data for item in seq]
data = flattened_data
flattened_data = np.concatenate(data, axis=0).astype("int64")
flattened_data = flattened_data.reshape([len(flattened_data), 1])
tensor = core.LoDTensor()
tensor.set(flattened_data, self.places[0])
tensor.set_lod(lod)
return tensor
def run(self,
program=None,
feed=None,
fetch_list=None,
feed_var_name='feed',
fetch_var_name='fetch',
scope=None,
return_numpy=True,
use_program_cache=False):
"""
:param program: the program that need to run
:param feed: feed variable list
:param fetch_list: fetch variable list
:param feed_var_name: feed_var_name default to 'feed'
:param fetch_var_name: fetch_var_name default to 'fetch'
:param scope: the scope used to run this program, you can switch it to different scope.
:param return_numpy: convert the fetched tensor to numpy
:param use_program_cache: set use_program_cache to true if program not changed compare to the last step.
:return:
"""
if feed is None:
feed = {}
if fetch_list is None:
fetch_list = []
if program is None:
program = default_main_program()
if not isinstance(program, Program):
raise TypeError()
if scope is None:
7 years ago
scope = global_scope()
program_cache = None
program_cache_key = None
if use_program_cache:
# find program cache by cache_key
feed_var_names = feed.keys()
fetch_var_names = [var.desc.name() for var in fetch_list]
program_cache_key = str(feed_var_names + fetch_var_names)
program_cache = self.program_caches.get(program_cache_key, None)
7 years ago
# TODO(qiao): Should check program_cache and program are exactly the same.
if program_cache is None:
program_cache = program.clone()
if use_program_cache:
self.program_caches[program_cache_key] = program_cache
global_block = program_cache.global_block()
if feed_var_name in global_block.vars:
feed_var = global_block.var(feed_var_name)
else:
feed_var = global_block.create_var(
name=feed_var_name,
type=core.VarDesc.VarType.FEED_MINIBATCH,
persistable=True)
if fetch_var_name in global_block.vars:
fetch_var = global_block.var(fetch_var_name)
else:
fetch_var = global_block.create_var(
name=fetch_var_name,
type=core.VarDesc.VarType.FETCH_LIST,
persistable=True)
# prepend feed operators
if not has_feed_operators(global_block, feed, feed_var_name):
for i, name in enumerate(feed):
out = global_block.var(name)
global_block.prepend_op(
type='feed',
inputs={'X': [feed_var]},
outputs={'Out': [out]},
attrs={'col': i})
# append fetch_operators
if not has_fetch_operators(global_block, fetch_list,
fetch_var_name):
for i, var in enumerate(fetch_list):
assert isinstance(var, Variable) or isinstance(var, str), (
"Wrong type for fetch_list[%s]: %s" % (i, type(var)))
global_block.append_op(
type='fetch',
inputs={'X': [var]},
outputs={'Out': [fetch_var]},
attrs={'col': i})
7 years ago
# feed var to framework
for op in program_cache.global_block().ops:
if op.desc.type() == 'feed':
feed_target_name = op.desc.output('Out')[0]
cur_feed = feed[feed_target_name]
if not isinstance(cur_feed, core.LoDTensor):
cur_feed = self.aslodtensor(cur_feed)
idx = op.desc.attr('col')
core.set_feed_variable(scope, cur_feed, feed_var_name, idx)
else:
break
self.executor.run(program_cache.desc, scope, 0, True, True)
outs = [
core.get_fetch_variable(scope, fetch_var_name, i)
for i in xrange(len(fetch_list))
]
if return_numpy:
outs = as_numpy(outs)
return outs