You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/backward.py

647 lines
24 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle.fluid import framework as framework
7 years ago
from . import core
7 years ago
import collections
import copy
import unique_name
__all__ = [
'append_backward',
'calc_gradient',
]
def _rename_arg_(op_descs, old_name, new_name, begin_idx=None, end_idx=None):
"""
Traverse all ops in op_descs[begin_idx : end_idx],
if any op has inputs/outputs named "old_name", rename it as 'new_name'
"""
7 years ago
if begin_idx is None:
begin_idx = 0
if end_idx is None:
end_idx = len(op_descs)
7 years ago
for i in range(begin_idx, end_idx):
op_desc = op_descs[i]
7 years ago
if isinstance(op_desc, tuple):
op_desc = op_desc[0]
op_desc.rename_input(old_name, new_name)
op_desc.rename_output(old_name, new_name)
7 years ago
def _create_op_desc_(op_type, inputs, outputs, attrs):
"""
Create a C++ OpDesc object with specified inputs, outputs and attributes.
"""
op_desc = core.OpDesc()
op_desc.set_type(op_type)
for para, args in inputs.iteritems():
op_desc.set_input(para, args)
for para, args in outputs.iteritems():
op_desc.set_output(para, args)
for name, val in attrs.iteritems():
if isinstance(val, framework.Block):
op_desc.set_block_attr(name, val.desc)
else:
op_desc.set_attr(name, val)
return op_desc
def _infer_var_data_type_(grad_var_name, block):
"""
Infer the data type of given grad variable
"""
grad_var = block.desc.find_var(grad_var_name.encode("ascii"))
fwd_name = _strip_grad_suffix_(grad_var_name.encode("ascii"))
if block.desc.has_var_recursive(fwd_name):
fwd_var = block.desc.find_var_recursive(fwd_name.encode("ascii"))
grad_var.set_dtype(fwd_var.dtype())
else:
[WIP] Move DataType enum inside VarType (#8447) * Move Pod Types from DataType enum to Type enum * Fixed data_type.h * Fix type in TensorDesc * Add comment to framework.proto * Fixed type in data_type.h * Updated format of type in data_type.h * Fix var_desc.h * Fix op_kernel_type.h * Fixed data_type_transform_test.cc * Fix operator.h * Fixed data_type_transform.cc * Fixed op_kernel_type_test.cc * Fix operator.cc * Fixed data_layout_transform_test.cc * Fix var_desc.cc * Fixed assign_value_op.cc * Fixed assign_value_op.h * fixed protobuf.cc * Fix data_layout_transform_test.cc and op_kernel_type_test.cc * Fixed rnn_memory_helper_op.cc * Fix progrma_desc_test.cc * Fixed fill_constant_batch_size_like_op.cc * Fix operator_test.cc * Fixed fill_constant_op.cc * Fixed gaussian_random_op.cc * Fixed uniform_random_op.cc * Fixed edit_distance_op.cc * Fixed fill_constant_batch_size_like_op.cc * Fixed rnn_memory_helper_op.cc * Fixed chunk_eval_op.cc * Fixed assign_value_op.cc * Fixed assign_value_op.h * Fixed cast_op.h * Fixed cast_op.h * Fix fill constant op * Fixed clang for assign_value_op.cc * Fix one_hot_op.h * Fix one_hot_op.cc * Fix fill_op.cc * Fixed sum_op.cc * Fixed sum_op clang * Fix uniform_random_op.cc * Fix gaussian_random_op.cc * Fix backward.cc * Fix protobuf.cc * Fixed prune_test.cc * Fixed op_registry_test.cc * Fix data_device_transform_test.cu * Fix travis error * Fixed one_hot_op.cu * Fixed op_registry_test.cc * Fixed nccl_op.cc * Fixing python tests * Revert "Fixing python tests" This reverts commit fccaa4c5818ed9f379ea1ce4315066cc78076c64. * Fixing Pybind to remove data type * Fixing tensor.py * Updated the new files: * Resolve error in merge conflict of fill_constant_batch_size_like_op.cc
7 years ago
grad_var.set_dtype(core.VarDesc.VarType.FP32)
7 years ago
def _all_in_set_(cands, s):
"""
Test if all elements of 'cands' are in set 's'
"""
if len(cands) == 0:
return False
for c in cands:
if not c in s:
return False
return True
def _some_in_set_(cands, s):
"""
Test if some elements of 'cands' are in set 's'
"""
if len(cands) == 0:
return False
for c in cands:
if c in s:
return True
return False
def _strip_grad_suffix_(name):
"""
Strip the grad suffix from the given varibale name
e.g. x@GRAD ==> x
y@GRAD@RENAME@1 ==> y
"""
7 years ago
pos = name.find(core.grad_var_suffix())
return name[:pos] if pos != -1 else name
def _append_grad_suffix_(name):
"""
Append grad suffix to the given variable name
e.g. x ==> x@GRAD
"""
return name + core.grad_var_suffix()
7 years ago
def _addup_repetitive_outputs_(op_descs):
"""
In backward part, an variable may be the output of more than one ops.
In this case, the variable should be the accumulation of all the outputs.
`sum_op`s are added to implement the accumulate.
"""
7 years ago
pending_sum_ops = []
var_rename_count = collections.defaultdict(int)
7 years ago
renamed_vars = collections.defaultdict(list)
for idx, op_desc in enumerate(op_descs):
7 years ago
for var_name in op_desc.input_arg_names():
7 years ago
if len(renamed_vars[var_name]) > 1:
pending_sum_ops.append(
(_create_op_desc_("sum", {"X": renamed_vars[var_name]},
{"Out": [var_name]}, {}), idx))
renamed_vars[var_name] = [var_name]
7 years ago
for var_name in op_desc.output_arg_names():
7 years ago
if var_name == core.empty_var_name(
) or var_name in op_desc.input_arg_names():
# empty variable or inplace op
continue
7 years ago
if len(renamed_vars[var_name]) == 0:
7 years ago
# it's the first time we get the variable
7 years ago
renamed_vars[var_name] = [var_name]
7 years ago
else:
7 years ago
if len(renamed_vars[var_name]) == 1:
7 years ago
new_name = var_name + "@RENAME@" + \
str(var_rename_count[var_name])
7 years ago
var_rename_count[var_name] += 1
7 years ago
# rename original var_name
7 years ago
renamed_vars[var_name][0] = new_name
_rename_arg_(op_descs, var_name, new_name, 0, idx)
_rename_arg_(pending_sum_ops, var_name, new_name)
7 years ago
new_name = var_name + "@RENAME@" + \
str(var_rename_count[var_name])
7 years ago
var_rename_count[var_name] += 1
7 years ago
op_desc.rename_output(var_name, new_name)
7 years ago
renamed_vars[var_name].append(new_name)
for var_name, inputs in renamed_vars.iteritems():
7 years ago
if len(inputs) > 1:
pending_sum_ops.append((_create_op_desc_(
7 years ago
"sum", {"X": inputs}, {"Out": [var_name]}, {}), len(op_descs)))
# sum_op descs are sorted according to their insert position
7 years ago
for p in reversed(pending_sum_ops):
7 years ago
op_descs.insert(p[1], p[0])
return op_descs
def _remove_no_grad_branch_(op_descs, no_grad_set):
"""
Remove unnecessary grad ops
A grad op can be removed in two cases:
1. all outputs of the grad op are in 'no_grad_set'
2. all grad inputs of the grad op are in 'no_grad_set'
"""
def _op_can_be_removed_(op_desc, no_grad_set):
7 years ago
out_arg_names = op_desc.output_arg_names()
if len(out_arg_names) == 0 or _all_in_set_(out_arg_names, no_grad_set):
return True
if _all_in_set_(
filter(lambda name: name.find(core.grad_var_suffix()) != -1,
op_desc.input_arg_names()), no_grad_set):
7 years ago
no_grad_set.update(out_arg_names)
return True
return False
7 years ago
# Remove ops whose outputs are all in no_grad_dict
op_descs = filter(
lambda op_desc: not _op_can_be_removed_(op_desc, no_grad_set), op_descs)
# Insert fill_zeros_like_op
to_insert = []
7 years ago
for idx, op_desc in enumerate(op_descs):
for arg in op_desc.input_arg_names():
7 years ago
if core.grad_var_suffix() in arg and arg in no_grad_set:
to_insert.append((_create_op_desc_("fill_zeros_like", {
"X": [_strip_grad_suffix_(arg)]
}, {"Out": [arg]}, {}), idx))
7 years ago
map(lambda p: op_descs.insert(p[1], p[0]), reversed(to_insert))
return op_descs
7 years ago
import proto.framework_pb2 as framework_pb2
def serialize_op_decs(op_desc):
protostr = op_desc.serialize_to_string()
proto = framework_pb2.OpDesc.FromString(str(protostr))
return proto.__str__()
def _callback_lookup_(op):
"""
Only used in _append_backward_ops_
Build and returns a callback function for certain op. For example
parallel_do: AllReduce
:param op:
:return: callback function
"""
if op.type == 'parallel_do' and op.attr('use_nccl'):
7 years ago
all_vars = op.block.vars
param_names = set(op.input('parameters'))
7 years ago
param_names = filter(lambda name: all_vars[name].stop_gradient is False,
param_names)
param_grad_names = [n + "@GRAD" for n in param_names]
class ParallelDoCallBack(object):
7 years ago
def __init__(self, param_grad_names, parallel_scopes_name):
self.has_inserted_nccl_init = False
self.param_grad_names = param_grad_names
7 years ago
self.parallel_scopes_name = parallel_scopes_name
def __call__(self, block, context):
7 years ago
if not self.has_inserted_nccl_init:
op_desc = _create_op_desc_(
7 years ago
"ncclInit",
{"parallel_scopes": self.parallel_scopes_name},
{"Communicator": ['nccl_com__do_not_change_']}, {})
block.program.global_block().desc.append_op().copy_from(
op_desc)
7 years ago
self.has_inserted_nccl_init = True
current_op_desc = context["__current_op_desc__"]
for o_param in current_op_desc.output_names():
for o_argu in current_op_desc.output(o_param):
if o_argu in self.param_grad_names:
7 years ago
allreduce_out_name = o_argu + "__nccl_all_reduce__"
op_desc = _create_op_desc_(
"ncclAllReduce", {
"X": [o_argu],
"Communicator":
['nccl_com__do_not_change_']
7 years ago
}, {"Out": [allreduce_out_name]},
{"reduction": "ncclSum"})
block.desc.append_op().copy_from(op_desc)
op_desc = _create_op_desc_(
"assign", {"X": [allreduce_out_name]},
{"Out": [o_argu]}, {})
block.desc.append_op().copy_from(op_desc)
7 years ago
return ParallelDoCallBack(param_grad_names,
op.output("parallel_scopes"))
else:
return None
def _append_backward_ops_(block,
ops,
7 years ago
target_block,
no_grad_dict,
grad_to_var,
7 years ago
callbacks=None):
"""
Create all grad ops, and insert them into given block
Args:
block(Block): the block where forward ops are
ops(Op): the forward operators whose backward ops need to be added
target_block(Block): the block which is going to hold new generated grad ops
no_grad_dict(dict):
key(int) block index
val(set) a set of varibale names. These varibales have no gradient
grad_to_var(dict)(output argument):
key(str): grad variable name
val(str): corresponding forward variable name
7 years ago
callback(callable object): a callable object used to decorate new generated grad ops
"""
if callbacks is not None:
7 years ago
assert (isinstance(callbacks, list))
for cb in callbacks:
if not hasattr(cb, '__call__'):
raise ValueError("'callback' must be a callable object.")
# grad_op_descs holds created grad_op, and will be appended to target_block
7 years ago
grad_op_descs = []
program = block.program
for op in reversed(ops):
7 years ago
grad_sub_block_list = []
# If the op has its own sub-block, deal with the sub-block first
if op.has_attr("sub_block"):
sub_block = program.block(op.block_attr("sub_block"))
grad_sub_block = program.create_block()
grad_sub_block.set_forward_block_idx(sub_block.idx)
cb = _callback_lookup_(op)
if cb is not None:
if callbacks is None:
new_callbacks = [cb]
else:
new_callbacks = callbacks + [_callback_lookup_(op)]
_append_backward_ops_(sub_block, sub_block.ops, grad_sub_block,
no_grad_dict, grad_to_var, new_callbacks)
7 years ago
else:
_append_backward_ops_(sub_block, sub_block.ops, grad_sub_block,
no_grad_dict, grad_to_var, callbacks)
program.rollback()
7 years ago
grad_sub_block_list.append(grad_sub_block.desc)
# Getting op's corresponding grad_op
7 years ago
grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
op.desc, no_grad_dict[block.idx], grad_sub_block_list)
7 years ago
grad_op_descs.extend(grad_op_desc)
grad_to_var.update(op_grad_to_var)
grad_op_descs = _addup_repetitive_outputs_(grad_op_descs)
grad_op_descs = _remove_no_grad_branch_(grad_op_descs,
no_grad_dict[block.idx])
7 years ago
# append op_desc in grad_op_descs to target_block
7 years ago
for op_desc in grad_op_descs:
new_op_desc = target_block.desc.append_op()
new_op_desc.copy_from(op_desc)
7 years ago
grad_to_var["__current_op_desc__"] = new_op_desc
if callbacks is not None:
assert (isinstance(callbacks, list))
for cb in callbacks:
cb(block=target_block, context=grad_to_var)
7 years ago
def _append_backward_vars_(block, start_op_idx, grad_to_var, grad_info_map):
"""
Create new variables required by backward pass.
Args:
block(Block): the block where new variables will be created
start_op_idx(int): Only variables required by ops in block.ops[start_op_idx : ] will be created
grad_to_var(dict):
key(str): grad variable name
val(str): corresponding forward variable name
In most cases, this dict is generated by _append_backward_ops_()
grad_info_map(dict)(output argument):
key(str): forward variable name
val(tuple): a tuple of (str, Block), str is the corresponding grad name, Block is the block containing grad variable
"""
for op_idx in range(start_op_idx, block.desc.op_size()):
op_desc = block.desc.op(op_idx)
if op_desc.has_attr("sub_block"):
sub_block = block.program.block(op_desc.block_attr("sub_block"))
_append_backward_vars_(sub_block, 0, grad_to_var, grad_info_map)
new_vars = set()
# create new gradient variables
for grad_var_name in op_desc.output_arg_names():
grad_var_name = grad_var_name.encode("ascii")
if block.desc.has_var_recursive(
grad_var_name) or grad_var_name == core.empty_var_name():
continue
block.desc.var(grad_var_name)
new_vars.add(grad_var_name)
if not grad_to_var.has_key(grad_var_name):
continue
grad_info_map[grad_to_var[grad_var_name]] = (grad_var_name, block)
# infer_shape and infer_type
op_desc.infer_var_type(block.desc)
op_desc.infer_shape(block.desc)
# ncclInit dones't need to set data_type
if op_desc.type() == 'ncclInit':
continue
for arg in op_desc.output_arg_names():
if arg in new_vars:
_infer_var_data_type_(arg, block)
7 years ago
def _rename_grad_(block, start_op_idx, grad_to_var, target_grad_map):
var_map = copy.copy(target_grad_map)
for op_idx in range(start_op_idx, block.desc.op_size()):
op_desc = block.desc.op(op_idx)
for name in op_desc.input_arg_names():
if name in var_map:
op_desc.rename_input(name, var_map[name])
for name in op_desc.output_arg_names():
if block.desc.find_var(name.encode("ascii")):
new_name = unique_name.generate(name)
op_desc.rename_output(name, new_name)
var_map[name] = new_name
for g, ng in var_map.iteritems():
if g in grad_to_var:
grad_to_var[ng] = grad_to_var[g]
grad_to_var.pop(g)
def _get_stop_gradients_(program):
no_grad_dict = dict()
assert isinstance(program, framework.Program)
for block in program.blocks:
assert isinstance(block, framework.Block)
block_no_grad_set = set()
for var in block.vars.itervalues():
assert isinstance(var, framework.Variable)
if var.stop_gradient:
block_no_grad_set.add(_append_grad_suffix_(var.name))
no_grad_dict[block.idx] = block_no_grad_set
return no_grad_dict
def append_backward(loss, parameter_list=None, no_grad_set=None,
callbacks=None):
"""
Append backward part to main_program
Args:
loss(Variable): The variable generated by cost function.
parameter_list(list[string]): Parameters that need to be updated by
optimizer. If None, it means all parameters need to be updated.
no_grad_set(set): Variables that have no gradients in Block 0.
All variables with `step_gradient=True` from all blocks will be
automatically added.
Return:
(list[(Variable,Variable)]): list of (parameter, gradient) pair.
"""
assert isinstance(loss, framework.Variable)
if callbacks is not None:
isinstance(callbacks, list)
program = loss.block.program
7 years ago
if no_grad_set is None:
no_grad_set = set()
no_grad_set = copy.copy(no_grad_set)
no_grad_dict = _get_stop_gradients_(program)
no_grad_dict[0].update(map(_append_grad_suffix_, no_grad_set))
7 years ago
grad_info_map = dict()
root_block = program.block(0)
fwd_op_num = root_block.desc.op_size()
current_block_idx = program.current_block_idx
7 years ago
grad_to_var = dict()
op_desc = _create_op_desc_("fill_constant", {}, {
"Out": [_append_grad_suffix_(loss.name)]
}, {"shape": [1],
"value": 1.0,
"dtype": loss.dtype})
root_block.desc.append_op().copy_from(op_desc)
block_no_grad_set = set(map(_strip_grad_suffix_, no_grad_dict[0]))
op_path = _find_op_path_(root_block, [loss], [], block_no_grad_set)
no_grad_dict[0].update(map(_append_grad_suffix_, block_no_grad_set))
_append_backward_ops_(root_block, op_path, root_block, no_grad_dict,
grad_to_var, callbacks)
# Because calc_gradient may be called multiple times,
# we need rename the internal gradient variables so that they have
# different names.
_rename_grad_(root_block, fwd_op_num, grad_to_var, {})
_append_backward_vars_(root_block, fwd_op_num, grad_to_var, grad_info_map)
7 years ago
program.current_block_idx = current_block_idx
program.sync_with_cpp()
if parameter_list is not None:
parameters = parameter_list
else:
params = program.global_block().all_parameters()
parameters = [param.name for param in params]
params_and_grads = []
for param in parameters:
7 years ago
if param not in grad_info_map:
7 years ago
continue
7 years ago
grad_info = grad_info_map[param]
grad_block = grad_info[1]
if not grad_block.has_var(grad_info[0]):
raise ValueError("grad block[{0}] did not have grad var {1}".format(
grad_info[1], grad_info[0]))
# Get the param var from the global block
param_var = program.global_block().var(param)
grad_var = grad_block.var(grad_info[0])
if loss.block.has_var(grad_info[0]):
params_and_grads.append((param_var, grad_var))
else:
params_and_grads.append((param_var, None))
return params_and_grads
def _as_list(x):
if x is None:
return []
return list(x) if isinstance(x, collections.Sequence) else [x]
def _find_op_path_(block, outputs, inputs, no_grad_set):
"""
no_grad_set will also be changed
"""
input_names = set([inp.name for inp in inputs])
output_names = set([out.name for out in outputs])
relevant_op_flags = [True] * len(block.ops)
# All the inputs of the block are used if inputs is empty,
if inputs:
for i, op in enumerate(block.ops):
if _some_in_set_(op.desc.input_arg_names(), input_names):
for name in op.desc.output_arg_names():
if name not in no_grad_set:
input_names.add(name)
else:
relevant_op_flags[i] = False
for i, op in reversed(list(enumerate(block.ops))):
if _some_in_set_(op.desc.output_arg_names(), output_names):
for name in op.desc.input_arg_names():
if name not in no_grad_set:
output_names.add(name)
else:
relevant_op_flags[i] = False
op_path = [
block.ops[i] for i in range(len(block.ops)) if relevant_op_flags[i]
]
if inputs:
for op in op_path:
for name in op.desc.input_arg_names():
if name not in input_names:
no_grad_set.add(name)
return op_path
def calc_gradient(targets, inputs, target_gradients=None, no_grad_set=None):
"""
Backpropagate the graidents of targets to inputs.
Args:
targets(Variable|list[Variable]): The target variables
inputs(Variable|list[Variable]): The input variables
no_grad_set(set[string]): The names of variables that have no gradients
in Block 0. All variables with `stop_gradient=True` from all blocks
will be automatically added.
Return:
(list[Variable]): list of gradients for inputs
If an input does not affect targets, the corresponding gradient variable
will be None
"""
targets = _as_list(targets)
inputs = _as_list(inputs)
target_gradients = _as_list(target_gradients)
block = targets[0].block
prog = block.program
block_idx = block.idx
if not target_gradients:
target_gradients = [None] * len(targets)
if len(targets) != len(target_gradients):
raise ValueError(
"Should have the same number of target_gradients as targets")
if no_grad_set is None:
no_grad_set = set()
no_grad_set = copy.copy(no_grad_set)
no_grad_dict = _get_stop_gradients_(prog)
no_grad_dict[0].update(map(_append_grad_suffix_, no_grad_set))
fwd_op_num = block.desc.op_size()
target_grad_map = {}
for i, grad in enumerate(target_gradients):
target = targets[i]
if grad is None:
grad_name = _append_grad_suffix_(target.name)
op_desc = _create_op_desc_("fill_constant_batch_size_like",
{"Input": [target.name]},
{"Out": [grad_name]}, {
"shape": target.shape,
"value": 1.0,
"dtype": target.dtype,
'input_dim_idx': 0,
'output_dim_idx': 0
})
block.desc.append_op().copy_from(op_desc)
else:
if target.block.idx != block_idx or target.block.program != prog:
raise ValueError("all targets must be in the same block")
if target.shape != grad.shape:
raise ValueError(
"The shapes of target and grad are different: %s %s" % (
target.name, grad.name))
target_grad_map[_append_grad_suffix_(target.name)] = grad.name
for input in inputs:
if input.block.program != prog:
raise "input must be in the same program as targets"
block_no_grad_set = set(map(_strip_grad_suffix_, no_grad_dict[0]))
op_path = _find_op_path_(block, targets, inputs, block_no_grad_set)
no_grad_dict[0].update(map(_append_grad_suffix_, block_no_grad_set))
grad_to_var = dict()
grad_info_map = dict()
_append_backward_ops_(block, op_path, block, no_grad_dict, grad_to_var)
# Because calc_gradient may be called multiple times,
# we need rename the internal gradient variables so that they have
# different names.
_rename_grad_(block, fwd_op_num, grad_to_var, target_grad_map)
_append_backward_vars_(block, fwd_op_num, grad_to_var, grad_info_map)
prog.sync_with_cpp()
grad_vars = []
for input_var in inputs:
if input_var.name not in grad_info_map:
grad_vars.append(None)
else:
grad_info = grad_info_map[input_var.name]
grad_block = grad_info[1]
grad_var = grad_block.var(grad_info[0])
grad_vars.append(grad_var)
if len(grad_vars) == 1:
return grad_vars[0]
else:
return grad_vars