You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
181 lines
6.6 KiB
181 lines
6.6 KiB
7 years ago
|
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
from __future__ import absolute_import
|
||
|
from __future__ import division
|
||
|
from __future__ import print_function
|
||
|
|
||
|
import argparse
|
||
|
import time
|
||
|
import numpy as np
|
||
|
|
||
|
import tensorflow as tf
|
||
|
import paddle.v2 as paddle
|
||
|
|
||
|
DTYPE = tf.float32
|
||
|
|
||
|
|
||
|
def parse_args():
|
||
|
parser = argparse.ArgumentParser("mnist model benchmark.")
|
||
|
parser.add_argument(
|
||
|
'--batch_size', type=int, default=128, help='The minibatch size.')
|
||
|
parser.add_argument(
|
||
|
'--iterations', type=int, default=35, help='The number of minibatches.')
|
||
|
parser.add_argument(
|
||
|
'--pass_num', type=int, default=5, help='The number of passes.')
|
||
|
parser.add_argument(
|
||
|
'--device',
|
||
|
type=str,
|
||
|
default='GPU',
|
||
|
choices=['CPU', 'GPU'],
|
||
|
help='The device type.')
|
||
|
args = parser.parse_args()
|
||
|
return args
|
||
|
|
||
|
|
||
|
def run_benchmark(args):
|
||
|
def weight_variable(dtype, shape):
|
||
|
initial = tf.truncated_normal(shape, stddev=0.1, dtype=dtype)
|
||
|
return tf.Variable(initial)
|
||
|
|
||
|
def bias_variable(dtype, shape):
|
||
|
initial = tf.constant(0.1, shape=shape, dtype=dtype)
|
||
|
return tf.Variable(initial)
|
||
|
|
||
|
device = '/cpu:0' if args.device == 'CPU' else '/device:GPU:0'
|
||
|
with tf.device(device):
|
||
|
images = tf.placeholder(DTYPE, shape=(None, 28, 28, 1))
|
||
|
labels = tf.placeholder(tf.int64, shape=(None, ))
|
||
|
|
||
|
# conv1, relu, pool1
|
||
|
conv1_weights = weight_variable(DTYPE, [5, 5, 1, 20])
|
||
|
conv1_bias = bias_variable(DTYPE, [20])
|
||
|
conv1 = tf.nn.conv2d(
|
||
|
images, conv1_weights, strides=[1, 1, 1, 1], padding="VALID")
|
||
|
relu1 = tf.nn.relu(tf.nn.bias_add(conv1, conv1_bias))
|
||
|
pool1 = tf.nn.max_pool(
|
||
|
relu1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="VALID")
|
||
|
|
||
|
# conv2, relu, pool2
|
||
|
conv2_weights = weight_variable(DTYPE, [5, 5, 20, 50])
|
||
|
conv2_bias = bias_variable(DTYPE, [50])
|
||
|
conv2 = tf.nn.conv2d(
|
||
|
pool1, conv2_weights, strides=[1, 1, 1, 1], padding="VALID")
|
||
|
relu2 = tf.nn.relu(tf.nn.bias_add(conv2, conv2_bias))
|
||
|
pool2 = tf.nn.max_pool(
|
||
|
relu2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="VALID")
|
||
|
|
||
|
# FC
|
||
|
pool_shape = pool2.get_shape().as_list()
|
||
|
hidden_dim = reduce(lambda a, b: a * b, pool_shape[1:], 1)
|
||
|
reshape = tf.reshape(pool2, shape=(tf.shape(pool2)[0], hidden_dim))
|
||
|
fc_weights = weight_variable(DTYPE, [hidden_dim, 10])
|
||
|
fc_bias = bias_variable(DTYPE, [10])
|
||
|
logits = tf.matmul(reshape, fc_weights) + fc_bias
|
||
|
|
||
|
# Get prediction
|
||
|
prediction = tf.nn.softmax(logits)
|
||
|
|
||
|
# Loss
|
||
|
one_hot_labels = tf.one_hot(labels, depth=10)
|
||
|
cost = -tf.reduce_sum(tf.log(prediction) * one_hot_labels, [1])
|
||
|
avg_cost = tf.reduce_mean(cost)
|
||
|
|
||
|
# Get accuracy
|
||
|
correct = tf.equal(tf.argmax(prediction, 1), labels)
|
||
|
accuracy = tf.reduce_mean(tf.cast(correct, tf.float32))
|
||
|
|
||
|
# metrics, g_accuracy
|
||
|
with tf.variable_scope("reset_metrics_accuracy_scope") as scope:
|
||
|
g_accuracy = tf.metrics.accuracy(
|
||
|
labels, tf.argmax(
|
||
|
prediction, axis=1))
|
||
|
vars = tf.contrib.framework.get_variables(
|
||
|
scope, collection=tf.GraphKeys.LOCAL_VARIABLES)
|
||
|
g_accuracy_reset_op = tf.variables_initializer(vars)
|
||
|
|
||
|
# Optimizer
|
||
|
opt = tf.train.AdamOptimizer(
|
||
|
learning_rate=0.001, beta1=0.9, beta2=0.999)
|
||
|
train_op = opt.minimize(avg_cost)
|
||
|
# train_op = tf.train.AdamOptimizer(1e-4).minimize(avg_cost)
|
||
|
|
||
|
train_reader = paddle.batch(
|
||
|
paddle.dataset.mnist.train(), batch_size=args.batch_size)
|
||
|
test_reader = paddle.batch(
|
||
|
paddle.dataset.mnist.test(), batch_size=args.batch_size)
|
||
|
|
||
|
def eval_test():
|
||
|
sess.run(g_accuracy_reset_op)
|
||
|
for batch_id, data in enumerate(test_reader()):
|
||
|
images_data = np.array(
|
||
|
map(lambda x: np.transpose(x[0].reshape([1, 28, 28]), axes=[1,2,0]), data)).astype("float32")
|
||
|
labels_data = np.array(map(lambda x: x[1], data)).astype("int64")
|
||
|
|
||
|
loss, acc, g_acc = sess.run(
|
||
|
[avg_cost, accuracy, g_accuracy],
|
||
|
feed_dict={images: images_data,
|
||
|
labels: labels_data})
|
||
|
return g_acc[1]
|
||
|
|
||
|
config = tf.ConfigProto(
|
||
|
intra_op_parallelism_threads=1, inter_op_parallelism_threads=1)
|
||
|
config.gpu_options.allow_growth = True
|
||
|
|
||
|
with tf.Session(config=config) as sess:
|
||
|
init_g = tf.global_variables_initializer()
|
||
|
init_l = tf.local_variables_initializer()
|
||
|
sess.run(init_g)
|
||
|
sess.run(init_l)
|
||
|
for pass_id in range(args.pass_num):
|
||
|
sess.run(g_accuracy_reset_op)
|
||
|
|
||
|
pass_start = time.time()
|
||
|
for batch_id, data in enumerate(train_reader()):
|
||
|
images_data = np.array(
|
||
|
map(lambda x: np.transpose(x[0].reshape([1, 28, 28]), axes=[1,2,0]), data)).astype("float32")
|
||
|
labels_data = np.array(map(lambda x: x[1], data)).astype(
|
||
|
"int64")
|
||
|
|
||
|
start = time.time()
|
||
|
_, loss, acc, g_acc = sess.run(
|
||
|
[train_op, avg_cost, accuracy, g_accuracy],
|
||
|
feed_dict={images: images_data,
|
||
|
labels: labels_data})
|
||
|
end = time.time()
|
||
|
|
||
|
print("pass=%d, batch=%d, loss=%f, error=%f, elapse=%f" %
|
||
|
(pass_id, batch_id, loss, 1 - acc, (end - start) / 1000))
|
||
|
|
||
|
pass_end = time.time()
|
||
|
test_avg_acc = eval_test()
|
||
|
|
||
|
print(
|
||
|
"pass=%d, training_avg_accuracy=%f, test_avg_acc=%f, elapse=%f"
|
||
|
% (pass_id, g_acc[1], test_avg_acc,
|
||
|
(pass_end - pass_start) / 1000))
|
||
|
|
||
|
|
||
|
def print_arguments(args):
|
||
|
print('----------- Configuration Arguments -----------')
|
||
|
for arg, value in sorted(vars(args).iteritems()):
|
||
|
print('%s: %s' % (arg, value))
|
||
|
print('------------------------------------------------')
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
args = parse_args()
|
||
|
print_arguments(args)
|
||
|
run_benchmark(args)
|