You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/operators/sequence_mask_op.h

118 lines
3.9 KiB

// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/platform/for_range.h"
namespace paddle {
namespace operators {
class SequenceMaskOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext *ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must exist");
auto max_len = ctx->Attrs().Get<int>("max_len");
PADDLE_ENFORCE_GT(max_len, 1, "Attr(max_len) must be larger than 1");
PADDLE_ENFORCE(ctx->HasOutput("Y"), "Output(Y) must exist");
auto dim = framework::vectorize2int(ctx->GetInputDim("X"));
dim.push_back(max_len);
ctx->SetOutputDim("Y", framework::make_ddim(dim));
}
};
class SequenceMaskOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("X", "The input of sequence_mask op.");
AddOutput("Y", "The output mask of sequence_mask op.");
AddAttr<int>("max_len", "The maximum length of the sequence.")
.GreaterThan(1);
AddAttr<int>("out_dtype", "Output data type");
AddComment(R"DOC(
SequenceMask Operator
This operator outputs a Mask according to Input(X) and Attr(max_len).
Supposing Input(X) is a Tensor with shape [d_1, d_2, ..., d_n], the
Output(Y) is a mask with shape [d_1, d_2, ..., d_n, max_len], where:
Y(i_1, i_2, ..., i_n, j) = (j < X(i_1, i_2, ..., i_n))
)DOC");
}
};
template <typename Tx, typename Ty>
struct SequenceMaskForRangeFunctor {
HOSTDEVICE SequenceMaskForRangeFunctor(const Tx *x, Ty *y, int max_len)
: x_(x), y_(y), max_len_(max_len) {}
HOSTDEVICE void operator()(int y_idx) const {
int x_idx = y_idx / max_len_;
int j = y_idx % max_len_;
y_[y_idx] = static_cast<Ty>(j < x_[x_idx] ? 1 : 0);
}
private:
const Tx *x_;
Ty *y_;
int max_len_;
};
template <typename DeviceContext, typename Tx>
struct SequenceMaskFunctor {
using Tensor = framework::LoDTensor;
SequenceMaskFunctor(const DeviceContext &ctx, const Tx *x, Tensor *y,
int limits, int max_len)
: ctx_(ctx), x_(x), y_(y), limits_(limits), max_len_(max_len) {}
template <typename Ty>
void operator()() const {
auto *y_data = y_->mutable_data<Ty>(ctx_.GetPlace());
platform::ForRange<DeviceContext> for_range(ctx_, limits_);
for_range(SequenceMaskForRangeFunctor<Tx, Ty>(x_, y_data, max_len_));
}
private:
const DeviceContext &ctx_;
const Tx *x_;
Tensor *y_;
int limits_;
int max_len_;
};
template <typename DeviceContext, typename Tx>
class SequenceMaskKernel : public framework::OpKernel<Tx> {
using Tensor = framework::LoDTensor;
public:
void Compute(const framework::ExecutionContext &ctx) const override {
auto *x = ctx.Input<Tensor>("X");
auto *y = ctx.Output<Tensor>("Y");
auto max_len = ctx.Attr<int>("max_len");
auto out_dtype = static_cast<framework::proto::VarType::Type>(
ctx.Attr<int>("out_dtype"));
auto &dev_ctx = ctx.template device_context<DeviceContext>();
framework::VisitDataType(out_dtype, SequenceMaskFunctor<DeviceContext, Tx>(
dev_ctx, x->data<Tx>(), y,
x->numel() * max_len, max_len));
}
};
} // namespace operators
} // namespace paddle