You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/py_paddle/dataprovider_converter.py

192 lines
6.2 KiB

# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle.trainer.PyDataProvider2 as dp2
import collections
import swig_paddle
import numpy
__all__ = ['DataProviderConverter']
class IScanner(object):
def __init__(self, input_type, pos):
self.input_type = input_type
assert isinstance(self.input_type, dp2.InputType)
self.pos = pos
def scan(self, dat):
pass
def finish_scan(self, argument):
pass
class DenseScanner(IScanner):
"""
:type __mat__: numpy.ndarray
"""
def __init__(self, input_type, pos):
IScanner.__init__(self, input_type, pos)
self.__mat__ = None
def scan(self, dat):
if self.__mat__ is None:
self.__mat__ = numpy.array([dat], dtype='float32')
else:
self.__mat__ = numpy.append(self.__mat__, [dat], axis=0)
def finish_scan(self, argument):
assert isinstance(argument, swig_paddle.Arguments)
assert isinstance(self.input_type, dp2.InputType)
if self.__mat__.dtype != numpy.float32:
self.__mat__ = self.__mat__.astype(numpy.float32)
m = swig_paddle.Matrix.createDenseFromNumpy(self.__mat__, True, False)
argument.setSlotValue(self.pos, m)
class SparseBinaryScanner(IScanner):
def __init__(self, input_type, pos):
IScanner.__init__(self, input_type, pos)
self.__rows__ = [0]
self.__cols__ = []
self.__height__ = 0
self.__nnz__ = 0
self.__value__ = []
def scan(self, dat):
self.extend_cols(dat)
self.__rows__.append(len(self.__cols__))
self.__height__ += 1
def extend_cols(self, dat):
self.__cols__.extend(dat)
def finish_scan(self, argument):
assert isinstance(argument, swig_paddle.Arguments)
assert isinstance(self.input_type, dp2.InputType)
m = swig_paddle.Matrix.createSparse(self.__height__,
self.input_type.dim,
len(self.__cols__),
len(self.__value__) == 0)
assert isinstance(m, swig_paddle.Matrix)
m.sparseCopyFrom(self.__rows__, self.__cols__, self.__value__)
argument.setSlotValue(self.pos, m)
class SparseFloatScanner(SparseBinaryScanner):
def __init__(self, input_type, pos):
SparseBinaryScanner.__init__(self, input_type, pos)
def extend_cols(self, dat):
self.__cols__.extend((x[0] for x in dat))
self.__value__.extend((x[1] for x in dat))
class IndexScanner(IScanner):
def __init__(self, input_type, pos):
IScanner.__init__(self, input_type, pos)
self.__ids__ = []
def scan(self, dat):
self.__ids__.append(dat)
def finish_scan(self, argument):
ids = swig_paddle.IVector.create(self.__ids__)
assert isinstance(argument, swig_paddle.Arguments)
argument.setSlotIds(self.pos, ids)
class SequenceScanner(IScanner):
def __init__(self, input_type, pos, inner_scanner, setter):
IScanner.__init__(self, input_type, pos)
self.__seq__ = [0]
self.__inner_scanner__ = inner_scanner
self.__setter__ = setter
def scan(self, dat):
self.__seq__.append(self.__seq__[-1] + self.get_size(dat))
for each in dat:
self.__inner_scanner__.scan(each)
def finish_scan(self, argument):
seq = swig_paddle.IVector.create(self.__seq__, False)
self.__setter__(argument, self.pos, seq)
self.__inner_scanner__.finish_scan(argument)
def get_size(self, dat):
if isinstance(self.__inner_scanner__, SequenceScanner):
return sum(self.__inner_scanner__.get_size(item) for item in dat)
else:
return len(dat)
class DataProviderConverter(object):
def __init__(self, input_types):
self.input_types = input_types
assert isinstance(self.input_types, collections.Sequence)
for each in self.input_types:
assert isinstance(each, dp2.InputType)
def convert(self, dat, argument=None):
if argument is None:
argument = swig_paddle.Arguments.createArguments(0)
assert isinstance(argument, swig_paddle.Arguments)
argument.resize(len(self.input_types))
scanners = [
DataProviderConverter.create_scanner(i, each_type)
for i, each_type in enumerate(self.input_types)
]
for each_sample in dat:
for each_step, scanner in zip(each_sample, scanners):
scanner.scan(each_step)
for scanner in scanners:
scanner.finish_scan(argument)
return argument
def __call__(self, dat, argument=None):
return self.convert(dat, argument)
@staticmethod
def create_scanner(i, each):
assert isinstance(each, dp2.InputType)
retv = None
if each.type == dp2.DataType.Dense:
retv = DenseScanner(each, i)
elif each.type == dp2.DataType.Index:
retv = IndexScanner(each, i)
elif each.type == dp2.DataType.SparseNonValue:
retv = SparseBinaryScanner(each, i)
elif each.type == dp2.DataType.SparseValue:
retv = SparseFloatScanner(each, i)
assert retv is not None
if each.seq_type == dp2.SequenceType.SUB_SEQUENCE:
retv = SequenceScanner(
each, i, retv,
lambda a, p, seq: a.setSlotSubSequenceStartPositions(p, seq))
if each.seq_type in [
dp2.SequenceType.SUB_SEQUENCE, dp2.SequenceType.SEQUENCE
]:
retv = SequenceScanner(
each, i, retv,
lambda a, p, seq: a.setSlotSequenceStartPositions(p, seq))
return retv