You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/framework/details/broadcast_op_handle_test.cc

175 lines
5.5 KiB

// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
7 years ago
#include "paddle/fluid/framework/details/broadcast_op_handle.h"
#include "gtest/gtest.h"
#include "paddle/fluid/platform/device_context.h"
namespace f = paddle::framework;
namespace p = paddle::platform;
// test data amount
const f::DDim kDims = {20, 20};
7 years ago
class BroadcastTester : public ::testing::Test {
public:
void SetUp() override {
int count = p::GetCUDADeviceCount();
if (count <= 1) {
7 years ago
LOG(WARNING) << "Cannot test multi-gpu Broadcast, because the CUDA "
"device count is "
<< count;
exit(0);
}
for (int i = 0; i < count; ++i) {
gpu_list_.emplace_back(p::CUDAPlace(i));
}
ctxs_ = new p::ContextMap(gpu_list_);
}
template <class T>
7 years ago
void BroadcastInitOp(int gpu_id = 0) {
for (size_t j = 0; j < gpu_list_.size(); ++j) {
local_scope_.push_back(&g_scope_.NewScope());
auto* out_var = local_scope_[j]->Var("out");
out_var->GetMutable<T>();
}
auto* in_var = local_scope_[gpu_id]->Var("input");
in_var->GetMutable<T>();
bc_op_handle_ =
7 years ago
new f::details::BroadcastOpHandle(local_scope_, gpu_list_, *ctxs_);
f::details::VarHandle* in_var_handle = new f::details::VarHandle();
in_var_handle->place_ = gpu_list_[gpu_id];
in_var_handle->name_ = "input";
in_var_handle->version_ = 1;
in_var_handle->generated_op_ = nullptr;
bc_op_handle_->AddInput(in_var_handle);
for (size_t j = 0; j < gpu_list_.size(); ++j) {
f::details::VarHandle* out_var_handle = new f::details::VarHandle();
out_var_handle->place_ = gpu_list_[j];
out_var_handle->name_ = "out";
out_var_handle->version_ = 2;
out_var_handle->generated_op_ = bc_op_handle_;
bc_op_handle_->AddOutput(out_var_handle);
}
}
7 years ago
void BroadcastDestroy() {
delete ctxs_;
for (auto in : bc_op_handle_->inputs_) {
delete in;
}
for (auto out : bc_op_handle_->outputs_) {
delete out;
}
delete bc_op_handle_;
}
public:
f::Scope g_scope_;
p::ContextMap* ctxs_;
std::vector<f::Scope*> local_scope_;
std::vector<p::Place> gpu_list_;
7 years ago
f::details::BroadcastOpHandle* bc_op_handle_;
};
7 years ago
TEST_F(BroadcastTester, BroadcastTestLodTensor) {
int gpu_id = 0;
7 years ago
BroadcastInitOp<f::LoDTensor>(gpu_id);
auto in_var = local_scope_[gpu_id]->Var("input");
auto in_lod_tensor = in_var->GetMutable<f::LoDTensor>();
in_lod_tensor->mutable_data<float>(kDims, gpu_list_[gpu_id]);
std::vector<float> send_vector(f::product(kDims), gpu_id + 12);
for (size_t k = 0; k < send_vector.size(); ++k) {
send_vector[k] = k;
}
f::LoD lod{{0, 10, 20}};
paddle::framework::TensorFromVector<float>(
send_vector, *(ctxs_->DevCtx(gpu_list_[gpu_id])), in_lod_tensor);
in_lod_tensor->set_lod(lod);
bc_op_handle_->Run(false);
ctxs_->WaitAll();
p::CPUPlace cpu_place;
for (size_t j = 0; j < gpu_list_.size(); ++j) {
auto out_var = local_scope_[j]->Var("out");
auto out_tensor = out_var->Get<f::LoDTensor>();
PADDLE_ENFORCE_EQ(out_tensor.lod(), lod, "lod is not equal.");
f::Tensor result_tensor;
f::TensorCopy(out_tensor, cpu_place, *(ctxs_->DevCtx(j)), &result_tensor);
float* ct = result_tensor.mutable_data<float>(cpu_place);
for (int64_t j = 0; j < f::product(kDims); ++j) {
ASSERT_NEAR(ct[j], send_vector[j], 1e-5);
}
}
7 years ago
BroadcastDestroy();
}
7 years ago
TEST_F(BroadcastTester, BroadcastTestSelectedRows) {
int gpu_id = 0;
7 years ago
BroadcastInitOp<f::SelectedRows>(gpu_id);
auto in_var = local_scope_[gpu_id]->Var("input");
auto in_selected_rows = in_var->GetMutable<f::SelectedRows>();
auto value = in_selected_rows->mutable_value();
value->mutable_data<float>(kDims, gpu_list_[gpu_id]);
int height = kDims[0] * 2;
std::vector<int64_t> rows{0, 1, 2, 3, 3, 0, 14, 7, 3, 1,
2, 4, 6, 3, 1, 1, 1, 1, 3, 7};
in_selected_rows->set_height(height);
in_selected_rows->set_rows(rows);
std::vector<float> send_vector(f::product(kDims));
for (size_t k = 0; k < send_vector.size(); ++k) {
send_vector[k] = k;
}
paddle::framework::TensorFromVector<float>(
send_vector, *(ctxs_->DevCtx(gpu_list_[gpu_id])), value);
bc_op_handle_->Run(false);
ctxs_->WaitAll();
p::CPUPlace cpu_place;
for (size_t j = 0; j < gpu_list_.size(); ++j) {
auto out_var = local_scope_[j]->Var("out");
auto& out_select_rows = out_var->Get<f::SelectedRows>();
auto rt = out_select_rows.value();
PADDLE_ENFORCE_EQ(out_select_rows.height(), height, "height is not equal.");
for (size_t k = 0; k < out_select_rows.rows().size(); ++k) {
PADDLE_ENFORCE_EQ(out_select_rows.rows()[k], rows[k]);
}
f::Tensor result_tensor;
f::TensorCopy(rt, cpu_place, *(ctxs_->DevCtx(j)), &result_tensor);
float* ct = result_tensor.data<float>();
for (int64_t j = 0; j < f::product(kDims); ++j) {
ASSERT_NEAR(ct[j], send_vector[j], 1e-5);
}
}
7 years ago
BroadcastDestroy();
}