You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/operators/fusion_gru_op.cc

333 lines
14 KiB

/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/fusion_gru_op.h"
#include <string>
#include "paddle/fluid/framework/eigen.h"
7 years ago
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/detail/activation_functions.h"
7 years ago
#include "paddle/fluid/operators/math/detail/gru_cpu_kernel.h"
#include "paddle/fluid/operators/math/detail/gru_kernel.h"
#include "paddle/fluid/operators/math/fc_compute.h"
#include "paddle/fluid/operators/math/gru_compute.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/sequence2batch.h"
namespace paddle {
namespace operators {
void FusionGRUOp::InferShape(framework::InferShapeContext* ctx) const {
7 years ago
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of GRU should not be null.");
PADDLE_ENFORCE(ctx->HasInput("WeightX"),
"Input(WeightX) of GRU should not be null.");
PADDLE_ENFORCE(ctx->HasInput("WeightH"),
"Input(WeightH) of GRU should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("XX"), "Output(XX) of GRU should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("BatchedGate"),
"Output(BatchedGate) of GRU should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("BatchResetHiddenPrev"),
7 years ago
"Output(BatchResetHiddenPrev) of GRU should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("BatchedHidden"),
"Output(BatchedHidden) of GRU should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("Hidden"),
7 years ago
"Output(Hidden) of GRU should not be null.");
auto x_dims = ctx->GetInputDim("X");
PADDLE_ENFORCE_EQ(x_dims.size(), 2, "Input(X)'s rank must be 2.");
auto wx_dims = ctx->GetInputDim("WeightX");
PADDLE_ENFORCE_EQ(wx_dims.size(), 2,
"The rank of Input(WeightX) should be 2.");
PADDLE_ENFORCE_EQ(wx_dims[0], x_dims[1],
"The first dimension of Input(WeightX) "
"should be %d.",
x_dims[1]);
int frame_size = wx_dims[1] / 3;
auto wh_dims = ctx->GetInputDim("WeightH");
PADDLE_ENFORCE_EQ(wh_dims.size(), 2,
"The rank of Input(WeightH) should be 2.");
PADDLE_ENFORCE_EQ(wh_dims[0], frame_size,
"The first dimension of Input(WeightH) "
"should be %d.",
frame_size);
PADDLE_ENFORCE_EQ(wh_dims[1], 3 * frame_size,
"The second dimension of Input(WeightH) "
"should be 3 * %d.",
frame_size);
if (ctx->HasInput("H0")) {
auto h0_dims = ctx->GetInputDim("H0");
PADDLE_ENFORCE_EQ(h0_dims[1], frame_size,
"The width of H0 must be equal to frame_size.");
}
if (ctx->HasInput("Bias")) {
7 years ago
auto b_dims = ctx->GetInputDim("Bias");
PADDLE_ENFORCE_EQ(b_dims.size(), 2, "The rank of Input(Bias) should be 2.");
PADDLE_ENFORCE_EQ(b_dims[0], 1,
"The first dimension of Input(Bias) should be 1.");
PADDLE_ENFORCE_EQ(b_dims[1], frame_size * 3,
"The shape of Bias must be [1, frame_size * 3].");
}
7 years ago
framework::DDim out_dims({x_dims[0], frame_size});
ctx->SetOutputDim("Hidden", out_dims);
ctx->SetOutputDim("BatchedGate", {x_dims[0], wx_dims[1]});
ctx->SetOutputDim("BatchedHidden", out_dims);
ctx->SetOutputDim("BatchResetHiddenPrev", out_dims);
ctx->ShareLoD("X", "Hidden");
int xx_width = x_dims[1] > wx_dims[1] ? wx_dims[1] : x_dims[1];
ctx->SetOutputDim("XX", {x_dims[0], xx_width});
ctx->ShareLoD("X", "XX");
}
framework::OpKernelType FusionGRUOp::GetExpectedKernelType(
const framework::ExecutionContext& ctx) const {
return framework::OpKernelType(
framework::ToDataType(ctx.Input<framework::LoDTensor>("X")->type()),
ctx.device_context());
}
void FusionGRUOpMaker::Make() {
7 years ago
AddInput("X",
"(LoDTensor) the input is a LodTensor, which support "
"variable-time length input sequence. The underlying tensor in "
7 years ago
"this LoDTensor is a matrix with shape (T X M), where T is the "
"total time steps in this mini-batch, M is the dim size of x.");
AddInput("H0",
"(Tensor, optional) The initial hidden state is an optional "
"input. This is a tensor with shape (N x D), where N is the "
"batch size, D is the hidden size.")
.AsDispensable();
7 years ago
AddInput("WeightX",
"(Tensor) The FC weight with shape (M x 3D),"
"where M is the dim size of x, D is the hidden size. ");
AddInput("WeightH",
"(Tensor) (D x 3D) Same as GRUOp, where D is the hidden size. ");
AddInput("Bias",
7 years ago
"(Tensor, optional) (1 x 3D)."
"Almost same as GRUOp."
"Note: if have FC bias it should be added on this bias.")
.AsDispensable();
7 years ago
AddOutput("XX",
"(LoDTensor) the result after X * WeightX (size is T x 4D)"
" or batched_X (size is T x M), this will be automatically chosen,"
" where T is the total time steps in this mini-batch,"
" D is the hidden size, M is the dim size of x input.")
.AsIntermediate();
7 years ago
AddOutput("BatchedGate", "(LoDTensor) Same as GRUOp").AsIntermediate();
AddOutput("BatchResetHiddenPrev", "(LoDTensor) (T x 3D) Same as GRUOp.")
.AsIntermediate();
7 years ago
AddOutput("BatchedHidden", "(LoDTensor) (T X D) Same as GRUOp.")
.AsIntermediate();
7 years ago
AddOutput("Hidden", "(LoDTensor) (T x D) Same as GRUOp");
AddAttr<std::string>("activation",
"(string, default tanh) "
"The activation type used for output candidate {h}_t.")
.SetDefault("tanh");
AddAttr<std::string>(
"gate_activation",
"(string, default sigmoid) "
"The activation type used in update gate and reset gate.")
.SetDefault("sigmoid");
AddAttr<bool>("is_reverse",
"(bool, defalut: False) "
"whether to compute reversed GRU.")
.SetDefault(false);
AddComment(R"DOC(
The Fusion complete GRU Operator.
This operator fuse the fully-connected operator into GRU,
more details can refer to GRU op.
)DOC");
}
template <typename DeviceContext, typename T>
inline void ReorderInitState(const DeviceContext& ctx,
const framework::Tensor& src,
framework::Vector<size_t> index_lod,
framework::Tensor* dst, bool indexed_src) {
math::CopyMatrixRowsFunctor<DeviceContext, T> row_shuffle;
dst->mutable_data<T>(src.dims(), ctx.GetPlace());
row_shuffle(ctx, src, index_lod, dst, indexed_src);
}
template <typename DeviceContext, typename T>
class FusionGRUKernel : public framework::OpKernel<T> {
public:
7 years ago
void Compute(const framework::ExecutionContext& ctx) const override {
auto* x = ctx.Input<LoDTensor>("X");
auto* wx = ctx.Input<Tensor>("WeightX");
auto* wh = ctx.Input<Tensor>("WeightH");
auto* bias = ctx.Input<Tensor>("Bias");
auto* h0 = ctx.Input<Tensor>("H0");
7 years ago
auto* xx = ctx.Output<LoDTensor>("XX");
auto* batched_gate = ctx.Output<LoDTensor>("BatchedGate");
auto* batch_reset_hidden_prev =
ctx.Output<LoDTensor>("BatchResetHiddenPrev");
auto* batch_hidden = ctx.Output<LoDTensor>("BatchedHidden");
auto* hidden_out = ctx.Output<LoDTensor>("Hidden");
bool is_reverse = ctx.Attr<bool>("is_reverse");
7 years ago
T* xx_data = xx->mutable_data<T>(ctx.GetPlace());
T* batched_gate_data = batched_gate->mutable_data<T>(ctx.GetPlace());
batch_reset_hidden_prev->mutable_data<T>(ctx.GetPlace());
batch_hidden->mutable_data<T>(ctx.GetPlace());
hidden_out->mutable_data<T>(ctx.GetPlace());
7 years ago
const T* x_data = x->data<T>();
const T* wx_data = wx->data<T>();
const T* wh_data = wh->data<T>();
auto x_dims = x->dims();
auto wx_dims = wx->dims();
auto& dev_ctx = ctx.template device_context<DeviceContext>();
auto blas = math::GetBlas<DeviceContext, T>(dev_ctx);
math::LoDTensor2BatchFunctor<DeviceContext, T> to_batch;
if (x_dims[1] > wx_dims[1]) {
math::FCCompute<DeviceContext, T>(blas, x_dims[0], wx_dims[1], x_dims[1],
x_data, wx_data, xx_data,
bias ? bias->data<T>() : NULL);
to_batch(dev_ctx, *xx, batched_gate, true, is_reverse);
} else {
to_batch(dev_ctx, *x, xx, true, is_reverse);
batched_gate->set_lod(xx->lod());
math::FCCompute<DeviceContext, T>(blas, x_dims[0], wx_dims[1], x_dims[1],
xx_data, wx_data, batched_gate_data,
bias ? bias->data<T>() : NULL);
}
7 years ago
int frame_size = static_cast<int>(wx_dims[1] / 3);
math::GRUMetaValue<T> gru_value;
7 years ago
gru_value.gate_weight = const_cast<T*>(wh_data);
gru_value.state_weight =
7 years ago
const_cast<T*>(wh_data + 2 * frame_size * frame_size);
Tensor ordered_h0;
7 years ago
framework::Vector<size_t> order(batched_gate->lod()[2]);
if (h0) {
ReorderInitState<DeviceContext, T>(
7 years ago
ctx.template device_context<DeviceContext>(), *h0, order, &ordered_h0,
true);
gru_value.prev_out_value = ordered_h0.data<T>();
} else {
gru_value.prev_out_value = nullptr;
}
7 years ago
auto batch_starts = batched_gate->lod()[0];
size_t seq_len = batch_starts.size() - 1;
7 years ago
auto active_node =
math::detail::GetActivationType(ctx.Attr<std::string>("activation"));
auto active_gate = math::detail::GetActivationType(
7 years ago
ctx.Attr<std::string>("gate_activation"));
#ifdef PADDLE_WITH_MKLML
// use MKL packed to speedup GEMM
if (FLAGS_paddle_num_threads >= 4) {
auto blas = math::GetBlas<DeviceContext, T>(dev_ctx);
T* packed_gate = blas.GEMM_ALLOC(CblasBMatrix, 1 /*height of C*/,
frame_size * 2 /*width of weight*/,
frame_size /*height of height*/);
PADDLE_ENFORCE(packed_gate);
blas.GEMM_PACK(CblasBMatrix, CblasNoTrans, 1 /*cur bs?*/, frame_size * 2,
frame_size, T(1.0), gru_value.gate_weight, frame_size * 2,
packed_gate);
T* packed_state = blas.GEMM_ALLOC(CblasBMatrix, 1 /*height of C*/,
frame_size /*width of weight*/,
frame_size /*height of height*/);
PADDLE_ENFORCE(packed_state);
blas.GEMM_PACK(CblasBMatrix, CblasNoTrans, 1 /*cur bs?*/, frame_size,
frame_size, T(1.0), gru_value.state_weight, frame_size,
packed_state);
for (size_t n = 0; n < seq_len; n++) {
int bstart = static_cast<int>(batch_starts[n]);
int bend = static_cast<int>(batch_starts[n + 1]);
int cur_batch_size = bend - bstart;
7 years ago
Tensor gate_t = batched_gate->Slice(bstart, bend);
Tensor reset_hidden_prev_t =
batch_reset_hidden_prev->Slice(bstart, bend);
Tensor hidden_t = batch_hidden->Slice(bstart, bend);
gru_value.output_value = hidden_t.data<T>();
gru_value.gate_value = gate_t.data<T>();
gru_value.reset_output_value = reset_hidden_prev_t.data<T>();
if (gru_value.prev_out_value) {
blas.GEMM_COMPUTE(
CblasNoTrans, CblasPacked, cur_batch_size, frame_size * 2,
frame_size, gru_value.prev_out_value, frame_size, packed_gate,
frame_size * 2, T(1), gru_value.gate_value, frame_size * 3);
}
math::detail::forward_reset_output(
math::detail::forward::gru_resetOutput<T>(), gru_value, frame_size,
cur_batch_size, active_gate);
if (gru_value.prev_out_value) {
blas.GEMM_COMPUTE(
CblasNoTrans, CblasPacked, cur_batch_size, frame_size, frame_size,
gru_value.reset_output_value, frame_size, packed_state,
frame_size, T(1), gru_value.gate_value + frame_size * 2,
frame_size * 3);
}
math::detail::forward_final_output(
math::detail::forward::gru_finalOutput<T>(), gru_value, frame_size,
cur_batch_size, active_node);
gru_value.prev_out_value = gru_value.output_value;
}
blas.GEMM_FREE(packed_gate);
blas.GEMM_FREE(packed_state);
} else {
#endif
for (size_t n = 0; n < seq_len; n++) {
int bstart = static_cast<int>(batch_starts[n]);
int bend = static_cast<int>(batch_starts[n + 1]);
int cur_batch_size = bend - bstart;
7 years ago
Tensor gate_t = batched_gate->Slice(bstart, bend);
Tensor reset_hidden_prev_t =
batch_reset_hidden_prev->Slice(bstart, bend);
Tensor hidden_t = batch_hidden->Slice(bstart, bend);
gru_value.output_value = hidden_t.data<T>();
gru_value.gate_value = gate_t.data<T>();
gru_value.reset_output_value = reset_hidden_prev_t.data<T>();
math::GRUUnitFunctor<DeviceContext, T>::compute(
dev_ctx, gru_value, frame_size, cur_batch_size, active_node,
active_gate);
gru_value.prev_out_value = gru_value.output_value;
}
#ifdef PADDLE_WITH_MKLML
}
#endif
math::Batch2LoDTensorFunctor<DeviceContext, T> to_seq;
7 years ago
batch_hidden->set_lod(batched_gate->lod());
to_seq(dev_ctx, *batch_hidden, hidden_out);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(fusion_gru, ops::FusionGRUOp, ops::FusionGRUOpMaker,
paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OP_CPU_KERNEL(
fusion_gru, ops::FusionGRUKernel<paddle::platform::CPUDeviceContext, float>,
7 years ago
ops::FusionGRUKernel<paddle::platform::CPUDeviceContext, double>);