You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
135 lines
4.3 KiB
135 lines
4.3 KiB
7 years ago
|
'''
|
||
|
GAN implementation, just a demo.
|
||
|
'''
|
||
|
# pd for short, should be more concise.
|
||
|
from paddle.v2 as pd
|
||
|
import numpy as np
|
||
|
import logging
|
||
|
|
||
|
X = pd.data(pd.float_vector(784))
|
||
|
|
||
|
# Conditional-GAN should be a class.
|
||
|
### Class member function: the initializer.
|
||
|
class DCGAN(object):
|
||
|
def __init__(self, y_dim=None):
|
||
|
|
||
|
# hyper parameters
|
||
|
self.y_dim = y_dim # conditional gan or not
|
||
|
self.batch_size = 100
|
||
|
self.z_dim = z_dim # input noise dimension
|
||
|
|
||
|
# define parameters of discriminators
|
||
|
self.D_W1 = pd.Variable(shape=[784, 128], data=pd.gaussian_normal_randomizer())
|
||
|
self.D_b1 = pd.Variable(np.zeros(128)) # variable also support initialization using a numpy data
|
||
|
self.D_W2 = pd.Varialble(np.random.rand(128, 1))
|
||
|
self.D_b2 = pd.Variable(np.zeros(128))
|
||
|
self.theta_D = [D_W1, D_b1, D_W2, D_b2]
|
||
|
|
||
|
# define parameters of generators
|
||
|
self.G_W1 = pd.Variable(shape=[784, 128], data=pd.gaussian_normal_randomizer())
|
||
|
self.G_b1 = pd.Variable(np.zeros(128)) # variable also support initialization using a numpy data
|
||
|
self.G_W2 = pd.Varialble(np.random.rand(128, 1))
|
||
|
self.G_b2 = pd.Variable(np.zeros(128))
|
||
|
self.theta_G = [D_W1, D_b1, D_W2, D_b2]
|
||
|
|
||
|
self.build_model()
|
||
|
|
||
|
### Class member function: Generator Net
|
||
|
def generator(self, z, y = None):
|
||
|
|
||
|
# Generator Net
|
||
|
if not self.y_dim:
|
||
|
z = pd.concat(1, [z, y])
|
||
|
|
||
|
G_h0 = pd.fc(z, self.G_w0, self.G_b0)
|
||
|
G_h0_bn = pd.batch_norm(G_h0)
|
||
|
G_h0_relu = pd.relu(G_h0_bn)
|
||
|
|
||
|
G_h1 = pd.fc(G_h0_relu, self.G_w1, self.G_b1)
|
||
|
G_h1_bn = pd.batch_norm(G_h1)
|
||
|
G_h1_relu = pd.relu(G_h1_bn)
|
||
|
|
||
|
G_h2 = pd.deconv(G_h1_relu, self.G_W2, self.G_b2))
|
||
|
G_im = pd.tanh(G_im)
|
||
|
return G_im
|
||
|
|
||
|
### Class member function: Discriminator Net
|
||
|
def discriminator(self, image):
|
||
|
|
||
|
# Discriminator Net
|
||
|
D_h0 = pd.conv2d(image, self.D_w0, self.D_b0)
|
||
|
D_h0_bn = pd.batchnorm(h0)
|
||
|
D_h0_relu = pd.lrelu(h0_bn)
|
||
|
|
||
|
D_h1 = pd.conv2d(D_h0_relu, self.D_w1, self.D_b1)
|
||
|
D_h1_bn = pd.batchnorm(D_h1)
|
||
|
D_h1_relu = pd.lrelu(D_h1_bn)
|
||
|
|
||
|
D_h2 = pd.fc(D_h1_relu, self.D_w2, self.D_b2)
|
||
|
return D_h2
|
||
|
|
||
|
### Class member function: Build the model
|
||
|
def build_model(self):
|
||
|
|
||
|
# input data
|
||
|
if self.y_dim:
|
||
|
self.y = pd.data(pd.float32, [self.batch_size, self.y_dim])
|
||
|
self.images = pd.data(pd.float32, [self.batch_size, self.im_size, self.im_size])
|
||
|
self.faked_images = pd.data(pd.float32, [self.batch_size, self.im_size, self.im_size])
|
||
|
self.z = pd.data(tf.float32, [None, self.z_size])
|
||
|
|
||
|
# if conditional GAN
|
||
|
if self.y_dim:
|
||
|
self.G = self.generator(self.z, self.y)
|
||
|
self.D_t = self.discriminator(self.images)
|
||
|
# generated fake images
|
||
|
self.sampled = self.sampler(self.z, self.y)
|
||
|
self.D_f = self.discriminator(self.images)
|
||
|
else: # original version of GAN
|
||
|
self.G = self.generator(self.z)
|
||
|
self.D_t = self.discriminator(self.images)
|
||
|
# generate fake images
|
||
|
self.sampled = self.sampler(self.z)
|
||
|
self.D_f = self.discriminator(self.images)
|
||
|
|
||
|
self.d_loss_real = pd.reduce_mean(pd.cross_entropy(self.D_t, np.ones(self.batch_size))
|
||
|
self.d_loss_fake = pd.reduce_mean(pd.cross_entropy(self.D_f, np.zeros(self.batch_size))
|
||
|
self.d_loss = self.d_loss_real + self.d_loss_fake
|
||
|
|
||
|
self.g_loss = pd.reduce_mean(pd.cross_entropy(self.D_f, np.ones(self.batch_szie))
|
||
|
|
||
|
# Main function for the demo:
|
||
|
if __name__ == "__main__":
|
||
|
|
||
|
# dcgan
|
||
|
dcgan = DCGAN()
|
||
|
dcgan.build_model()
|
||
|
|
||
|
# load mnist data
|
||
|
data_X, data_y = self.load_mnist()
|
||
|
|
||
|
# Two subgraphs required!!!
|
||
|
d_optim = pd.train.Adam(lr = .001, beta= .1).minimize(self.d_loss)
|
||
|
g_optim = pd.train.Adam(lr = .001, beta= .1).minimize(self.g_loss)
|
||
|
|
||
|
# executor
|
||
|
sess = pd.executor()
|
||
|
|
||
|
# training
|
||
|
for epoch in xrange(10000):
|
||
|
for batch_id in range(N / batch_size):
|
||
|
idx = ...
|
||
|
# sample a batch
|
||
|
batch_im, batch_label = data_X[idx:idx+batch_size], data_y[idx:idx+batch_size]
|
||
|
# sample z
|
||
|
batch_z = np.random.uniform(-1., 1., [batch_size, z_dim])
|
||
|
|
||
|
if batch_id % 2 == 0:
|
||
|
sess.run(d_optim,
|
||
|
feed_dict = {dcgan.images: batch_im,
|
||
|
dcgan.y: batch_label,
|
||
|
dcgan.z: batch_z})
|
||
|
else:
|
||
|
sess.run(g_optim,
|
||
|
feed_dict = {dcgan.z: batch_z})
|