|
|
|
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
//
|
|
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
// you may not use this file except in compliance with the License.
|
|
|
|
// You may obtain a copy of the License at
|
|
|
|
//
|
|
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
//
|
|
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
// See the License for the specific language governing permissions and
|
|
|
|
// limitations under the License.
|
|
|
|
#pragma once
|
|
|
|
|
|
|
|
/*! \file paddle_api.h
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <cassert>
|
|
|
|
#include <memory>
|
|
|
|
#include <string>
|
|
|
|
#include <vector>
|
|
|
|
|
|
|
|
/*! \namespace paddle
|
|
|
|
*/
|
|
|
|
namespace paddle {
|
|
|
|
|
|
|
|
/** paddle data type.
|
|
|
|
*/
|
|
|
|
enum PaddleDType {
|
|
|
|
FLOAT32,
|
|
|
|
INT64,
|
|
|
|
// TODO(Superjomn) support more data types if needed.
|
|
|
|
};
|
|
|
|
|
|
|
|
/**
|
|
|
|
*\brief Memory menager for PaddleTensor.
|
|
|
|
*
|
|
|
|
*The PaddleBuf holds a buffer for data input or output. The memory can be
|
|
|
|
*allocated by user or by PaddleBuf itself, but in any case, the PaddleBuf
|
|
|
|
*should be reused for better performance.
|
|
|
|
*
|
|
|
|
*For user allocated memory, the following API can be used:
|
|
|
|
*- PaddleBuf(void* data, size_t length) to set an external memory by
|
|
|
|
*specifying
|
|
|
|
* the memory address and length.
|
|
|
|
*- Reset(void* data, size_t length) to reset the PaddleBuf with an external
|
|
|
|
*memory.
|
|
|
|
*ATTENTION, for user allocated memory, deallocation should be done by users
|
|
|
|
*externally after the program finished. The PaddleBuf won't do any allocation
|
|
|
|
*or deallocation.
|
|
|
|
*
|
|
|
|
*To have the PaddleBuf allocate and manage the memory:
|
|
|
|
*- PaddleBuf(size_t length) will allocate a memory of size `length`.
|
|
|
|
*- Resize(size_t length) resize the memory to no less than `length`, ATTENTION
|
|
|
|
* if the allocated memory is larger than `length`, nothing will done.
|
|
|
|
*/
|
|
|
|
class PaddleBuf {
|
|
|
|
public:
|
|
|
|
/** PaddleBuf allocate memory internally, and manage it.
|
|
|
|
*/
|
|
|
|
explicit PaddleBuf(size_t length)
|
|
|
|
: data_(new char[length]), length_(length), memory_owned_(true) {}
|
|
|
|
/** Set external memory, the PaddleBuf won't manage it.
|
|
|
|
*/
|
|
|
|
PaddleBuf(void* data, size_t length)
|
|
|
|
: data_(data), length_(length), memory_owned_{false} {}
|
|
|
|
/** Copy only available when memory is managed externally.
|
|
|
|
*/
|
|
|
|
explicit PaddleBuf(const PaddleBuf&);
|
|
|
|
|
|
|
|
/** Resize the memory.
|
|
|
|
*/
|
|
|
|
void Resize(size_t length);
|
|
|
|
/** Reset to external memory, with address and length set.
|
|
|
|
*/
|
|
|
|
void Reset(void* data, size_t length);
|
|
|
|
/** Tell whether the buffer is empty.
|
|
|
|
*/
|
|
|
|
bool empty() const { return length_ == 0; }
|
|
|
|
/** Get the memory address.
|
|
|
|
*/
|
|
|
|
void* data() const { return data_; }
|
|
|
|
/** Get the memory length.
|
|
|
|
*/
|
|
|
|
size_t length() const { return length_; }
|
|
|
|
|
|
|
|
~PaddleBuf() { Free(); }
|
|
|
|
PaddleBuf& operator=(const PaddleBuf&);
|
|
|
|
PaddleBuf& operator=(PaddleBuf&&);
|
|
|
|
PaddleBuf() = default;
|
|
|
|
PaddleBuf(PaddleBuf&& other);
|
|
|
|
|
|
|
|
private:
|
|
|
|
void Free();
|
|
|
|
void* data_{nullptr}; // pointer to the data memory.
|
|
|
|
size_t length_{0}; // number of memory bytes.
|
|
|
|
bool memory_owned_{true};
|
|
|
|
};
|
|
|
|
|
|
|
|
/** Basic input and output data structure for PaddlePredictor.
|
|
|
|
*/
|
|
|
|
struct PaddleTensor {
|
|
|
|
PaddleTensor() = default;
|
|
|
|
std::string name; // variable name.
|
|
|
|
std::vector<int> shape;
|
|
|
|
PaddleBuf data; // blob of data.
|
|
|
|
PaddleDType dtype;
|
|
|
|
std::vector<std::vector<size_t>> lod; // Tensor+LoD equals LoDTensor
|
|
|
|
};
|
|
|
|
|
|
|
|
enum class PaddlePlace { kUNK = -1, kCPU, kGPU };
|
|
|
|
/** Tensor without copy, currently only supports AnalysisPredictor.
|
|
|
|
*/
|
|
|
|
class ZeroCopyTensor {
|
|
|
|
public:
|
|
|
|
void Reshape(const std::vector<int>& shape);
|
|
|
|
|
|
|
|
/** Get the memory in CPU or GPU with specific data type, should Reshape first
|
|
|
|
* to tell the data size.
|
|
|
|
* Once can directly call this data to feed the data.
|
|
|
|
* This is for write the input tensor.
|
|
|
|
*/
|
|
|
|
template <typename T>
|
|
|
|
T* mutable_data(PaddlePlace place);
|
|
|
|
/** Get the memory directly, will return the place and memory size by pointer.
|
|
|
|
* This is for reading the output tensor.
|
|
|
|
*/
|
|
|
|
template <typename T>
|
|
|
|
T* data(PaddlePlace* place, int* size) const;
|
|
|
|
|
|
|
|
std::vector<int64_t> shape() const;
|
|
|
|
|
|
|
|
void SetLoD(const std::vector<std::vector<size_t>>& x);
|
|
|
|
std::vector<std::vector<size_t>> lod() const;
|
|
|
|
const std::string& name() const { return name_; }
|
|
|
|
|
|
|
|
protected:
|
|
|
|
explicit ZeroCopyTensor(void* scope) : scope_{scope} {}
|
|
|
|
void SetName(const std::string& name) { name_ = name; }
|
|
|
|
void* FindTensor() const;
|
|
|
|
|
|
|
|
private:
|
|
|
|
std::string name_;
|
|
|
|
bool input_or_output_;
|
|
|
|
friend class AnalysisPredictor;
|
|
|
|
void* scope_{nullptr};
|
|
|
|
};
|
|
|
|
|
|
|
|
/** A simple Inference API for Paddle.
|
|
|
|
*/
|
|
|
|
class PaddlePredictor {
|
|
|
|
public:
|
|
|
|
struct Config;
|
|
|
|
PaddlePredictor() = default;
|
|
|
|
PaddlePredictor(const PaddlePredictor&) = delete;
|
|
|
|
PaddlePredictor& operator=(const PaddlePredictor&) = delete;
|
|
|
|
|
|
|
|
/** Predict an record.
|
|
|
|
* The caller should be responsible for allocating and releasing the memory of
|
|
|
|
* `inputs`. `inputs` should be available until Run returns. Caller should be
|
|
|
|
* responsible for the output tensor's buffer, either allocated or passed from
|
|
|
|
* outside.
|
|
|
|
*/
|
|
|
|
virtual bool Run(const std::vector<PaddleTensor>& inputs,
|
|
|
|
std::vector<PaddleTensor>* output_data,
|
|
|
|
int batch_size = -1) = 0;
|
|
|
|
|
|
|
|
/** Zero copy input and output optimization.
|
|
|
|
* Get the input or output tensors, and operate on their memory directly,
|
|
|
|
* without copy.
|
|
|
|
*/
|
|
|
|
virtual std::unique_ptr<ZeroCopyTensor> GetInputTensor(
|
|
|
|
const std::string& name) {
|
|
|
|
return nullptr;
|
|
|
|
}
|
|
|
|
virtual std::unique_ptr<ZeroCopyTensor> GetOutputTensor(
|
|
|
|
const std::string& name) {
|
|
|
|
return nullptr;
|
|
|
|
}
|
|
|
|
virtual bool ZeroCopyRun() { return false; }
|
|
|
|
|
|
|
|
/** Clone a predictor that share the model weights, the Cloned predictor
|
|
|
|
* should be thread-safe.
|
|
|
|
*/
|
|
|
|
virtual std::unique_ptr<PaddlePredictor> Clone() = 0;
|
|
|
|
|
|
|
|
/** Destroy the Predictor.
|
|
|
|
*/
|
|
|
|
virtual ~PaddlePredictor() = default;
|
|
|
|
|
|
|
|
/** The common configs for all the predictors.
|
|
|
|
*/
|
|
|
|
struct Config {
|
|
|
|
std::string model_dir; /*!< path to the model directory. */
|
|
|
|
};
|
|
|
|
};
|
|
|
|
|
|
|
|
struct NativeConfig : public PaddlePredictor::Config {
|
|
|
|
// GPU related fields.
|
|
|
|
bool use_gpu{false};
|
|
|
|
int device{0};
|
|
|
|
float fraction_of_gpu_memory{
|
|
|
|
-1.f}; /*!< Change to a float in (0,1] if needed. */
|
|
|
|
|
|
|
|
// Specify the exact path of program and parameter files.
|
|
|
|
std::string prog_file;
|
|
|
|
std::string param_file;
|
|
|
|
|
|
|
|
/** Specify the variable's name of each input if input tensors don't follow
|
|
|
|
* the
|
|
|
|
* `feeds` and `fetches` of the phase `save_inference_model`.
|
|
|
|
*/
|
|
|
|
bool specify_input_name{false};
|
|
|
|
|
|
|
|
/** Set and get the number of cpu math library threads.
|
|
|
|
*/
|
|
|
|
void SetCpuMathLibraryNumThreads(int cpu_math_library_num_threads) {
|
|
|
|
cpu_math_library_num_threads_ = cpu_math_library_num_threads;
|
|
|
|
}
|
|
|
|
int cpu_math_library_num_threads() const {
|
|
|
|
return cpu_math_library_num_threads_;
|
|
|
|
}
|
|
|
|
|
|
|
|
protected:
|
|
|
|
// number of cpu math library (such as MKL, OpenBlas) threads for each
|
|
|
|
// instance.
|
|
|
|
int cpu_math_library_num_threads_{1};
|
|
|
|
};
|
|
|
|
|
|
|
|
/*! \fn std::unique_ptr<PaddlePredictor> CreatePaddlePredictor(const ConfigT&
|
|
|
|
* config);
|
|
|
|
*
|
|
|
|
* \brief A factory to help create different predictors.
|
|
|
|
*
|
|
|
|
* Usage:
|
|
|
|
*
|
|
|
|
* NativeConfig config;
|
|
|
|
* ... // change the configs.
|
|
|
|
* auto native_predictor = CreatePaddlePredictor(config);
|
|
|
|
*
|
|
|
|
* FOR EXTENSION DEVELOPER:
|
|
|
|
* Different predictors are designated by config type. Similar configs can be
|
|
|
|
* merged, but there shouldn't be a huge config containing different fields for
|
|
|
|
* more than one kind of predictors.
|
|
|
|
*/
|
|
|
|
template <typename ConfigT>
|
|
|
|
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor(const ConfigT& config);
|
|
|
|
|
|
|
|
/** NOTE The following APIs are too trivial, we will discard it in the following
|
|
|
|
* versions.
|
|
|
|
*/
|
|
|
|
enum class PaddleEngineKind {
|
|
|
|
kNative = 0, /*!< Use the native Fluid facility. */
|
|
|
|
kAutoMixedTensorRT, /*!< Automatically mix Fluid with TensorRT. */
|
|
|
|
kAnalysis, /*!< More optimization. */
|
|
|
|
kAnakin /*!< Use Anakin for inference, not mature yet. */
|
|
|
|
};
|
|
|
|
|
|
|
|
template <typename ConfigT, PaddleEngineKind engine>
|
|
|
|
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor(const ConfigT& config);
|
|
|
|
|
|
|
|
int PaddleDtypeSize(PaddleDType dtype);
|
|
|
|
|
|
|
|
} // namespace paddle
|